THE LOCATION OF THE OPTIMAL ROUTE
ON A RECTANGULAR SURFACE*)

Alois VADNAL'), Janez DEKLEVA?), Marjan SIMONCIC?)

The surface on which it is required to solve the problem of the op-
timal route has, as seen in fig. 1. the shape of a rectangle leaning uni-
formly toward the base-line a so that the isohipses are parallel to the
base-line and perpendicular to the side-line b of the rectangle. We place
a perpendicular Cartesian coordinate system x0y on the surface; the
absciss and ordinate axes coincide with the base-line and the left side-
-line of the rectangle respectively. Each surface of the area is, in a cho-
sen time unit, an origin of the substratum to bet transported; we presu-
me that the density of the substratum is uniform over the entire rec-
tangle and equal to g. We trace a single route connecting the right side-
-line and the prescribed point E(0.g) on the left side-line of the rectan-

gle; the location of this route is determined according to the optimum
criteria which requires the minimization of the total transportatlon

costs.

With ‘the model under consideration only the following types: of
expenditures are taken into account: :

1. Transportation costs along natural routes from the origins to the
route under consideration; these routes flow along the fall lines and
are therefore parallel to the side-lines of the rectangle. We presume that
these costs are linearly proportionate to the quantity of substratum m,
the length of the route s and the transportation costs p. Because of the
inclination of the surface we distinguish the costs p, of transport down-
wird from the costs p, of transport upward to the route, where p, < p..

2. Transportation costs along the route itself. We presume that

these costs are lineally proportionate to the quantity of the transported
substratum 2, the length s of the route and the transportation costs p,.

3. Costs involving the means of transportation. Among these costs
only the ones depending upon the length of the route are taken into
account. We presume that these costs are linearly proportionate to the
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lenght s of the route and the costs p, in a length unit of the route, re-
duced to a unit of time.

In the numerical example included, the parameters assume the
following values:

a = 2000 m
b =1200m
g = 0001 t/m?2,

while the costs expressed in monetary units are:

=20
P, = 60
ps=1
v, = 8000
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Fig. 1. A route, terminating at a fixed point E.

Suppose the function y = y(x) defines the trace K of an artificial
route; the function satisfies the boundary conditions:

x=0qgy=gq

The artificial route is designed so as to minimize the compound trans-
portation oosts it induces. To meet this purpose let us calculate the com-
pound costs of transportation of the substratum from the entire space
to the termination point E(0, q) of the route; these costs are quadruple:
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1. The costs of transport of the substratum along a natural route
downward to the fare; these costs equal:

a b 1 a
T, = jdem (m—y» dn =—€P15 (b —y)* dx
0 ¥ 2 0

2. The costs of transportation of the substratum along a natural
route upward to the fare; these costs equal:

a ¥ 1 a
T, = % dx % £p:0—mdn =~ gp, _iyz dx

3. Transportation costs along the fare; these costs equal:
a X R
T, = bgp, s dxf V 1+ (dy/dx)? dx
0 0

4. The costs of establishment and maintenance of an artifical rou-
te; these equal:

To=p, {V 1 + (@dy/dny? dx
0

By adding all these costs we obtain the compound costs of tran-
sportation of the substratum from the entire space:

ari 1
T =] [*2— g py (b—y)? tEp it
0

X
+bgPaSVl+(y')z dx +
0

sp )T op | dx

The following transformation of the third term:
jb g P ( §V1+(y’) dx) dx =
o 0

=bgps[xfl/1+(y’)2 dx
0

— fxV 1407 dx:l.—_:

a
0 0

=bgpr{@—nl1+07 dx
0



EKONOMSKA ANALIZA

. yields:

T &N =j'[ ;“ gpy b—yF + % gp 2+ (bep @a—x)+p)V 1 + (y’)z]dx m
ol. , :

These costs depend upon the funotion y(x). This function is to be
determined so as to minimize the transportation costs T(y(x). Conse-
quently a problem of the calculus of variations is to be solved. In this
case the functional, the minimum of which is to be determined, is of
the type: :

JOy=[f(x 7 y)dx
0

Since the functional is of this type that enables the application of
the Euler’s differential equation of the calculus of variations:

8/ _d (af
- = ( @)

dy dx \ay

The derivatives in the Euler's differential equation equal:

]

—f=g (Pr+p)y—bpy

ay

9 ' - y

—— = (b = —

3y (b g py (@a—x) + py) VItoh

d 6f y' yn

dx 3y g2 V14072 (LA JC)H“)\/(l-k(y’)z)“

Substituting these expressions into (2) and amranging the terms we
obtain the final form of the Euler's differential equation of the variatio-
nal problem under consideration:

r

g +p)y+begp .\-/H—_y,ﬁ—(b g p; (@a—x) +P4)1/—(-1—_¢I_W:bgm (3)

It is not likely that we would obtain the general solution of this
second-order differential equation by means of successive integrations.
Therefore in our further deliberations we shall .consider only the more
important particluar solutions of the locational problem. These parti-
cular solutions satisfy the chosen boundary conditions and can be obta-
ined either directly from the differential-equaticn or computed numeri-
cally by means of a digital computer.#) The general solution of the dif-

4) The program for numerical calculation of a particular extremal dependent upon gi-
ven boundary points B & E i» dcposited in the program library of the Institute of Transpor-
tation.
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ferential equation is represented by a two-parameter family of extre-
mals; each of them originates from an initial point B on the right side-
-line and terminates in a point E on the left side-line of the rectangular
space.

First let us answer the question of the existence of an extremal
parallel to the base-line of the rectangle. Since such an extremal is ob-
viously a straight line parallel to the abscissa, its first and second de-
rivative assume the value 0 at all points. Substituting these conditions.
into (3), we obtain the equation:

g(py + po) = bgp,,
which yields:

— bp,
Pt ps

We denote the fraction (bp,) (p, + p,) by the letter s. Thus we have
confirmed the existence of an extremal parallel to the base-line of the
rectangle; it originates in the point B, (a, s), passes at the height s and
terminates in E; (0, s). Given numerical data®), this route is represented
on fig. 2., whence s = 300 m. '

yh

-
X

Fig. 2. A total extremal

: %) As previcusly stated the da*ta with the problem under concideration are: » = 2000 m,
b =1200m, g =0000.t/m? pr.= 20, pr = 60, p3 = 1 and ps =.8000 monctary-wnits. C
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The advantage of this route over all other possible routes is that
the costs of transportation of the substratum to the route are minimized
along is entire length and each particular section as well; therefore it
is referred to as the fotas extremal. This route connects rectilinearly the
point B, and E; and partitions, as seen on fig, 3., the rectangular space
into two parts; the lower part under the route and the upper part over
the route.

The total extermal which satisfies the equation y = s is of exceeding
importance in the locational problem under consideration. Since the
costs of transportation of the substratum to this route are minized along
each of its sections, every other extremal, boundary and initial condition
taken into account, tends to approach the latter as close as possible. Ac-
cording to the properties of extremals supplied by the theory of the
calculus of variations, two extremals terminating in a given point E do
not intersect; therefore only one extremal terminating in a given point
E passes through each point of the rectangle. The same applies to the
extremals originating from a given point B. Hereafter we shall consider
extremals with given boundary conditions and require that the extremal
originate from @ given initial point B and terminate in a fixed point E.

First let us consider a family of extremals terminating in a given
point E on the lower left side-line of the rectangle. Fig. 3. represents
some of these extremals calculated by means of a digital computer.¢)

If the prescribed initial point B is located under the total extremal
the corresponding extremal originating in B at first approaches the total

yvh
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Fig. 3. A Family of Extremals

¢) Fig. 3 represents the extremals terminatir(t)% in a common point E (0,150) and origina-
ting from points B, (2000,0), B, (2000,150), B, (2000,300), B; (2000,750), respectively.
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extremal, achieves a maximum in a certain point under it and then de-
parts from the total extremal in order to reach the prescribed termina-
ting point E. If the prescribed initial point B is located above the total]
extremal, the corresponding extremal at first approaches the itotal extre-
mal, presently intersects it at a certain point and then departs from the
total extremal in order to reach the terminating point E. The calculated
flow of extremals corresponds with the intuitive discernment that the
extremal, while fulfilling the boundary conditions, tends to approach
the total extremal as close as possible.

Among all the extremals terminating in a prescribed point E let
us determine ithe one for which the compound transportation costs are
minimal. It shall be seen that this is a distinct property of the extre-
ma] originating from the point B, at the beginning of the total extremal.

First let us convince ourselves of the fact that, in comparison with
any other extremal originating in some point B above B, the compound
transportation costs corresponding to the extremal from B, to E are mi-
nimal; the basis of this reasoning is represented on fig. 4.

Fig. 4. Comparison of Extremals
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Let P be the intersection point of the extremal from B to E with
the total extremal. The compound transportaion costs T(B, P,E) along
the extremal through B, P and E are greater than the compound tran-
sportaton costs T(B,, P, E) along the route through B,, P and E:

T(B, P, E) > T(B,, P, E).

This results from the fact that the route from B to P is longer, and
from the viewpoint of transportation costs as well, less convenient then
the route along the total extremal from B, to P. Furthermore, the com-
pound transportation costs T(B; P, E) along the route through B, P
and E are greater then the compound transportation costs T(B, E)
along the extremal from B, to E:

T(B, P, E) > T(B, E)

This follows from the fact that the route from B, to E is an extremal
and therefore the corresponding compound transportation costs are les-
ser in comparison with any other route connecting the two points. Both-
inequalities yield:

T(B, E) > T(B, E),

This inequality applies in cases where the point B is located above the
total extremal. Presently, let us establish that the compound transport-
ation costs corresponding to the extremal from B, to E are less than
those corresponding to any other extremal originating in a certain point
B located under the total extremal. In order to accomplish this we have
to prove that for each extremal passing through the point B located
under B, there exists at least one extremal for which the corresponding
compound transportation costs are less; this line of reasoning is illust-
rated on fig. 5. '

Let the extremal from B to E reach its maximum at the point M located
between B and B, on the total extremal: To the point M is assigned a
certain point B, located on the right side-line of the rectangle and having
the same ordinate as M; therefore B, is located between B and B,.

The compound transportation. costs 7(B, M, E) along the extremal
through B, M and E are greater then the compound transportation costs
T'(B,, M, E) along the route through B;, M and E:

T(B, M, E) > T(B,, M, E)

This follows from the fact that the route from B to M is longer and
from the viewpoint of transportation costs less convenient then the rou-
te through B, and M. Furthermore, the ccmpound transportation costs
T(B, M, E) along the route through B,, M and E are greater then the
compeund transportation costs 7T(B,, E) along the extremal from
B, to E:

T(B,, M, E) > T(B,, E)
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This follows from the fact that the route from B, to E is an extremal
and therefore corresponding transportation costs are less then those
for any other route connecting the two points. Utilizing both inequalities
yiel'd'S:

| T(B, E) < T(B, E) |

This inequality applies to the situations where the point B, is located
under B, and B, lies between the points B and B,. Thus, from the view-
point of the compound transportation costs we have obtained a better
extremal through B, and E to the extremal through B and E. Repeating

Fig. 5. Comparison of Extremals

the above described procedure we obtain, from the viewpoint of the
compound transportation costs, a still better extremal from B, to E.
Successive repetitions of this procedure renders a sequence af extremals
in which each term is better then the former from the viewpoint of the
compound transportation costs. All these extremals terminate in the
point E and originate from the points:

B, B,, B,, B;,..

*»
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respectively. Knowledge of the general solution of the differential equa-
tion (9) would enable us to prove that the ordinates of these points in-
crease and furthermore, that the sequence comprised of the ordinates
of these points converges towards the ordinate of the point B,. Accor-
dingly it follows that the compound transportation costs corresponding
to the extremal from B, to E are less then those corresponding to any
other extremal terminating in the point E and originating in any point
B located under the total extremal. | :

Consequently, among all the extremals terminating in a prescri-
bed point E and originating from a certain point B located under or on
the total extremal, it is the extremal from B, to E for which the corres-
ponding transportation costs are minimal. This extremal originates in
the point B; at the beginning of the total extremal and then descends
in order to reach the prescribed terminal point E on the left sideline
of the rectangle.
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Fig. 6. A Family of Extremals

Similar conclusions apply to cases where the prescribed terminal
point E is located above the total extremal. Fig. 6. represents some of
these extremals caloulated by means of a digital computer.”) Among all
these extremals it is the extremal from B; to E for wich the compound
transportation costs are minimal. This extremal originates from the po-
int B at the beginning of the total extremal and then curves upward
in order to reach the prescribed tenminal point E. Thus we have obtai-

7) Fig. 6. represents a family extremals with a common terminal point E (0,750) and ori-
ginating from B: (2000,0), B2 (2000,150), Bs (2000,300) and Bs (2000,450), respectively.
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ned the complete solution to the problem of the optimal location of the
route terminating in a prescribed point E on the left sidelline of the
rectangle. Namely, the optimal route in each particular case is deter
mined by the extremnal originating from the point B, at the beginning
of the total extremal and termnating in a prescribed point E. Fig. 7.
represents some of these extremals calculated by means of a digital
computer.?)
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Fig. 7. Optimal Routes

All these extremals originate from the point B, at the end of the total
extremal and then depart from it in onder to reach the prescribed ter-
minal point E on the left side-line of the rectangle.

Presently let us take into account some interesting possibilities to
be encountered when the parameters assume certain exceptional parti-
cular values.

First, let us consider the case where p, = 0, i. e. where the costs
for the artificial route are omitted. In this case the differential equation
(9) has a particular solution:

This can be readily verified by substitution into the differential eqﬁatiom.
In this particular case the optimal route originates in the initial point
y = —_.p1— b = 5
o+

% Fig. 7. represents a group of extremals with a common initial point Be  (2000,300r
and terminating in Eiv (0,0), E2 (0,130), E (0,300) and Es (0,750), respectively.
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B,, follows the total extremal to the point E; on the left side-line of the
rectangle and then follows the side-line in order to reach the prescribed
terminal point E. This case is represented on fig. 8.; the point E is loca-
ted under the total extremal.

d

ﬂv

Fig. 8. An Optimal Route where p; = (.

Another possibility arises when p, = oo, i. e. all other costs are ne-
gligibly small compared to the costs for the artificial route. Dividing
the differential equation (9) and neglecting the terms having p, in the

divisor, we obtain the differential equation:

4

y

N

Since the divisor on the left side of the equation does not equal 0 we
obtain the differential equation of second order:

y” =0
with the general solution:
y=0Cx+6
The constants ¢, and ¢, can be determined utilizing the oonditian that
the route connects B, with the prescribed terminal point E. In this case

the optimal route is a straight line through B, and E. This route is rep-
resented on fig. 9. '
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Fig. 9. The Optimal Route where p; = oo
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Fig. 10. The Optimal route where p, = oo
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Finally let us consider the possibility when p, = oo, i. e. transport
upward to the artificial route cannot be taken into account. Dividing
the differential equation (9) by p, and omitting the terms having p, in
the divisor renders the equation:

y=10

In this case the optimal route follows the base-line of the rectangle from
the left side-line to the origin and then follows the right side-line in or-
der to reach the prescribed tenminal point E. Such a route is represen-
ted on fig. 10.

LOKACIJA OPTIMALNE POTI NA PRAVOKOTNI PLOSKVI
Alojzij VADNAL, Janez DEKLEVA, Marjan SIMONCIC

Rezime

V Clanku je reSen problem optimalne lokacije ene poti na pravo-
kotni povrsini; pri tem vodi pot, kakor se vidi na sl. 1., od desnega roba
do predpisane tocke E na levem robu pravokotnika. Kriterij optimalno-
Sti je zahteva, da naj bodo skupni prevozni stroSki najmanjsi.

Dolocevanje optimalne trase poti je obravnavano kot problem vari-
acijskega racuna, ki privede do reSevanja dokuj komplicirane diferenci-
alne enacbe drugega reda (3). Nekatere posebne relitve te diferencial-
ne enacbe, ki zado$cajo dolocenim robnim pogojem, so izradunane po
to¢kah z elektronskim racunalnikom. Optimalno traso doloduje v vsa-
kem primeru ekstremala, ki zacne, kakor vidimo na sl. 8., v skupni za-
Cetni tocki B in konla v kaki predpisani koncni tocki E.



