BILINEAR PROGRAMMING
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1. FORMUTATION OF THE GENERAL PROBLEM OF THE
BILINEAR PROGRAMMING

Some problems of determining the optimum lead to a special type
ul non-lincar problems with twe independent serics ol variables the
hilincar form of which is the ebjective Tunction of the problem.

The genceral problem ol non-linear programming with bilinear ob-
pective Tunction can be formulated as Tollows:

Thye maximum of the bilinear objective funclion:
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In it the numbers u, v, r and s are any natural numbers, and the
cocfficients, a, b, ¢, and g, represent any real numbers in all indexes.

The corresponding problem of the bilinear programming of the
minimum bilinear function is formulated in a similar way, the formu-
lation and treatment of the problem is left to the reader.

The formulated problem includes two independent series of va-
riables which are not interconditioned. The variables of each series sa-
tisfy the condition of nonnegativity and each series has its group of
linear inequations and equations. The objective function is the bilinear
form of these variables.

We follow the procedure usually adopted when treating problems
of linear programming. We first transform the inequalities into equations
by introducing the corresponding slack variables. Upon introducing two
series of slack variables:

Xp+1y Xmy Po+ly oy Yn
we arrive at the following problem of bilinear programming:

We have to determine the maximum of the bilinear objective
function: '

f = Cuxlyz + v + melyu +
X1t - F CoXmn
such that the variables:
x; {(i=1,2,...,m); y(i=12...,n)
satisfy the conditions of nonnegativity:
%= 0yz=0
and the linear equations:
Xy + ... X, = Py,
anXy +...+ Aym¥in = Prs
buyy + oo+ by, = qu
bslyl o bmyn = g
In the formulated problem the following matrices occur:

Ay« o« . Qu 1. . . 0

Arxm=Arx(pir)=
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bH
Baxp = Bsx(‘)-{vs) =

by

Cm)(nz Cul .

Pr

*1

Xm

[0S
O3,

byv 1 .0
Cly o .. . 0
Cuv o .. . 0
0 0 0
£l
Q= .
4s
M
v=| .
Yn

Having introduced these matrices we can reformulate the pro-
blem of bilinear programming in matrix form: To do this we have to
delermine the maximum of the bilinear objective function:

f=XTCY
under such that the vectors X and Y satisfy ithe conditions of nonega-
flvity:
X =0,
=0
und (he matrix equations:
AX =P,
BY =Q.

e pair of vectors X and Y is called feasible solution of the for-
mﬂlod problem if vector X satisfies the condition of nonnegativity and
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the matrix equation AX = P, and if vector Y -satisfies the condition of
nonnegativity and the matrix equation BY = Q.

It follows from the theory of linear programming that the vectors
X, which satisfy such conditions, form a convex polyhedron. Let us sup-
pose that K is this convex polyhedron and that it has the following
extreme points:

1 2
Ey, E%, Ej.

Similarly, the vectors Y, which satisfy such conditions, form a
convex polyhedron. Let us suppose that K, is this convex polyhedron
and that it has the following extreme points:

1 2 :
E,. E, ..., E).

In what follows, the bilinear programming problem with two se-
parate series of variables will be translated into a problem of bilinear
programming in which the two series of variables will be joined so that
we can deal with only one system of conditional equations, and <with
only one conditional matrix equation, respectively.

The vector space P(X) is the set of all m-dimensional vectors, or
points X; the convex polyhedron K, being part of this vector space. The
vector space P(Y) is the set of. all n-dimensional vectors, or pomts Y;
the convex polyhedron K, being part of this vector space.

The product of the vector spaces P(X) and P(Y) is the vector
space P(Z), which is the set of all (m - »n) dimensional vectors or po-
ints, respectively.

X
Y

Each vector of the vector space P(X) can be expressed by the
corresponding vector Z of the vector space P(Z) in the following way:

P(Z)=P(X) P(Y) =

x| o | ze=1o0y z

Similarly, we can express each vector Y of the vector space P(Y)
by the corresponding vector Z of by the vector space P(Z):

Y= - L l z=q0 1]z
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lel us also intreduce matrices:

Doy -~ o o we &0 0 00 I]
" b
a, . . . amx 0 . . 0 | vl
D == |
O . . . 0 b, . . . om !i I o BH
. |
f
0 0 bsl hyn |.‘

| vey
E= e bt
‘ 7 H ” [
o
i qx i
|| 0 0 E'“ C'lul
X : o
I S :
jo . . .0 Cwt ... c'.,.mi o ("‘
f"[m [ IR e ! ==
io._.o 0o .. .0y Lo of
) . . S
' !
4o .. .0 o .. .ol

Upen introducing these melrices lhe conditions of nonnegativity
Yoo b and ¥ Z 0 are joined into enly one condition of nonnegalivity

2 @ Uy the malrix equations ¥YX = P and BY = Q are joined into only
s i cquation DZ = R; the bilinear objeclive [unction gets the
lorn: [ w Z7FZ0 In this way, the primary problem with separated con-

dithmg has been translated into a problem in which the conditions are
ingl togelher.

The maximum of the bilinear objective funection:

f=Z2'FZ
sitch Thul 1he vector Z osalisties the demund lor nonnegativity:
Z=0
! The mindris cquation:
DZ=R.

taa bwen cdelermined.
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It follows from the theory of linear programming that the vectors
Z, wich satisfies these conditions, form the convex polyhedron; this
polyhedron can be marked with K.

II. THE PROPERTIES OF THE FEASIBLE SOLUTIONS

There are two theorems for the feasible solutions of both the pri-
mary problem with separated conditions and the new problem with
joined conditions. ,

Theorem 1: The product of the vectors X and Y- which represent
the feasible solutions of the primary problem, is the feasible solution
Z of the new problem in wich the conditions are joined fogether.

Proof: The vectors X and Y, which represent the feasible solution
of the primary problem, correspond to the inequalities X = 0 and
Y = 0; their product

Z=

Y

satisfies thus the inequality Z 2 0. Further, since vectors X and Y re-
present the feasible solution of the primary problem, they correspond
to the equations AX = P and BY = Q; their product thus satisfies the
matrix equation:

4 ©

X P,

0

I

0O B Y

It follows therefrom that their product Z corresponds to the equ-
ation DZ = R. The vector Z is thus a feasible solution of the new
problem in which the conditions are joined and thereby the theorem
has been proved.

" It follows firom this teorem that the product of any vector X of the
convex polyhedron K, and of any vector Y of the convex polyhedron
K, is a vector Z of the convex polyhedron K..

Theorem 2: Any feasible solution of the new problem, the one in
which the conditions are joined, is the product of two vectors X and
Y, which represent the feasible solution of the primary problem.

Proof: Since vector Z, feasible solution of the new problem, satisfies
the inequality
X

Z = go;

Y

vectors X and Y satisfy the condition of nonnegativity X = 0 and ¥ = G.
DZ = R, the matrix equation, Is true:

A O X P

Q

Il

O B Y
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{L follows therefrom that the vectors X and Y satisfy equations AX = P
and BY = Q. The vectors X and Y thus represent the feasible solution
ol the primary problem, which had to be proved.

It follows from this theorem that each point Z of the convex po-
lyhiedron K, is the product of a point X of the convex polyhedron X,
nnd of a point ¥ of the convex polyhedron K,.

The following theorems are true for the vectors the X, ¥ and Z of
the convex polyhedra K, K, and K:

Theorem I1: The product of the two non-extreme points X and Y
ol the convex polyhedra K, and K, is the non-extreme point Z of the
convex polyhedron K.

Proof: As the vector X is a vector of the convex polyhedron K,,
it can be expressed as a convex linear combination of the extreme ve-
cfors of the polyhedron K.

X=p EL 4 ... - puE!
where
0<p <, ..., 0 <1

it ot pe=1

As Lhe vector X is not an extreme vector there are at least two positive
goclficients among the coefficients p of the linear combination.

As the vector Y is a vector of the convex polyhedron Ky, .it can
bu expressed as a convex linear combination of the extreme vectorns of
[ho polyhedron Ky, in this way:

Y=g E,+ ... +av E}
where

Ay the vector Y is not an extreme vector there are at least two positive
cocelticients among the coefficients p of the linear combination.

Tuking into consideration such an expression of the vectors X
m%cl Y we can put down the product of these two vectors in the follo-
Wihig way:

X P Ey ... puEL
Y @ E,+...4a E)
, , E!
i=u jmvy Fx
=3, >, pa
iml j=1 ]
E}'

0§p;q;§l
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for each pair of the indexes i and j, and if

[y j=v f=u J=v
S5O pgs =3, pty, a=1,
i=t J=1 i=1  j=1

the product of the vectors X and Y is a convex linear combination of

the vectors

t 1 ! u
E.r Ex Efc Ex
3 seey 3 eevy 3 e

1 ¥ 1 v
E}, £, E, E,

of the convex polyhedron K,. Since at least four coefficients in the
above expression are positive, the product of the vectors X and Y
is a convex linear composition of at least four vectors of the convex
polyhedron K, and therefore it is not an extreme vector. ‘

Theorem 2: The product of a non-extreme point X of the polyhe-
dron K_and an extreme point E )‘ of the polyhedron K, is a non-extreme
point of the polyhedron X,

Proof: The non-extreme vector X of the polyhedron K, can be ex-
pressed as a convex linear combination of the extreme points of the
polyhedron:

X.~—-_p1E}(-}-...+puE;; .

Since there are at least two positive coefficients.p in this linear
combination, the product can be expressed as follows:

X pELF .. .4 pu EX EL EY
= . =P + - + Pu
] . .
ES E}, E/, £,

The product is a convex linear combination of the vectors of the
convex polyhedron K,. Since at least two coefficients p of this combi-
nation are positive, the product is not an extreme point of the polyhe—
dron K, which was to be proved.

Theorem 3 can be proved in a similar way: The product of an ex-

treme point EL of the convex polyhedron X, and of a non-extreme point
Y of the convex polyhedron K, is a non-extreme point of the convex po-
lyhedron K,.

Theorem 4: The p'roduct of an extreme point E" of the polyhedron

K, and of an extreme point E’ of the polyhedron K, is an extreme point
of the polyhedron X,.

Proof: Let us suppose that the product
Ei
X

Ei
Y
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is not an extreme vector of the polyhedron K, With this assumption
there existed at least two veotors

X1 Xz
Zt =

! Y2

such that the product would be the convex linear combination of these
{wo vectors. Thus equation

i
E! x Xz

o

3
s
3

would be completed under the conditions

0l pCl, 0<CgCl, pta=1L

From the final equation follow the equations:
Ei =g X1-}q X2,

E,=pYi4 gv2

""sus vectors E. and E';, are convex linear combinations of pairs of other
vaclors. This, however, is a contradiction, since both vectors are extre-
e, And thereby the theorem has been proved.

Theorem 5: Each extreme point E, of the convex polyhedron X,
I# (he product of an extreme point of the vector E, of the polyhedron
N, tnd of an extreme point E, of the polyhedron K.

Proof: If the theorem twere not true one of the three equations
x I
a) E.= , by  E=
Ey |

i which the vector X would be a non-extreme vector of the polyhe-
dron K, and the vector Y should exist as a non-extreme vector of the
I)Ulyh(.dl ‘on K. It can be proved that none of the three possibilities men-
floned can be true.

E:
, c) Er=

’ X

Y Y

The non-feasibility of the first possibility can be proved as follows:
8lhee X is a non-extreme vector of the polyhedron K,, it can be expres-
i8¢ B8 n convex linear combination of the extreme points of the po-
Iyhedyon:

X=p EL 4+ ... 4 pu EX;
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in which at least two coefficients of the combination are positive. For
this reason it could be possible to express the vector E; through equ-
ations:

1
x

ol

P1E}¢+ +PME_:
Ey

E = +...+Pu

=™

v Ey

in which at least two coelficients of the linear combination are positive.
Vector E, could be expressed as a convex linear combinaiion of least
two other vectors of the polyhedron K., and therefore, it would not be
the extreme vector. The first possibility leads to contradiction and is
rejected. In a similar way one can prove the impossibility of the two
equations.

It follows from the proved theorerns that the convex pelyhedron
K, is the product of the convex polyhedra K, and K,; its extreme points
are the possible products of cach one extreme point of the polyhedron
K, and of each ong extreme point of the polyhedron K,. Thus the convex
polyhedron has the following extreme points:

o1 1
E“;)a‘ o || 5
- Y| SRR N
I EJ' |EJ'

1 —u

E“fz E"‘ Ev— E"‘
i I R - "
Ey Ey

III. THE METHOD OF ITERATIONS

Secking solution to problems of programming with bilincar ob-
jective function the iteration method starts with successive iterations,
and permanently improves the solutions until the optimal feasible so-
Iution dis attained.

Let us suppose that we start from the following first feasible so-
lution of the problem:

XI
Zn—

Ve

This being a feasible solution, the conditions of nonnegativity are sa-
tisfied:

and the matrix equations are completed:
A X“ =P,
BY'=¢;

DZN =R,
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‘I'he value of the objective function for this feasible solution is:
[ =0, YY) = f(21) = (2T FZ*1.

This first feasible solution is succeded by the second feasible so-
jution in the following way:

In the convex polyhedron K, we choose the vector X!, which re-
presents the first feasible solution. We insert this vector into the bilinear
[unction f(X,Y) thus producing a new function f(X',Y), which is linear
with regard to the elements of the vector Y. We calculate the maximum
lor this function swhich involves solution of the following linear pro-
gramme: "

max f{(X,Y);, YZ0& BY =Q.

T'his linear programme is solved by a routine procedure. The optimal
[casible solution Y? is an extreme point of the convex polyhedron K,
und the corresponding maximum value of the objective function amo-
unls to (X!, ¥?) Since this value is optimal, the following equation is
trues

XL YY) = f(X, 7).

We continue the procedure in a similar way, always starting from
(he calculated vector Y2. We insert the vector Y2 into the bilinear func-
tion f(X,Y) and thus produce the function f(X,¥?) which is. linear
with regard to the components of the variable vector X. We calculate

(lt¢ maximum for this function, by solving the following bilinear pro-
gramme:

max f(X,¥2); XZ0 & AX = P.

The optimal feasible solution X? of this linear programme is an extre-
tne point of the convex polyhedron K, and can be calculated according by
routine technique the corresponding maximum value of the objective func-

tlon amounts to f(X? ¥?). Since this value is optimal, the following equation
I true:

HXLYY) = HXT).

We have concluded the first iteration, thereby attaining the second
funsible solution:

X
Z22

>

Y,
for which the objective function has the value:

fr = f(X3,Y?) = f(Z2) = (Z2)TF 72
Itrom the above inequalities it follows that the iﬁequality

HXLYY) = f(X%72),
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is true and the second f{easible solution is as good as or better than the
first one. '

As X2 is the extreme point of the polyhedron X, and Y? the extre-
_me ‘point of the polyhedron K, is point Z#, which is a product of the
points X? and, Y% the extreme pomt of the polyhedron K.

It follows, that the maximum of the bilinear functions is at an
_extreme point of the convex polyhedron X..

We can develop the second iteration in a similar way starting from
the second feasible solution Z*. We insert the vector X*? into the bilinear
“function, thus attaining the linear programme:

max f(X3Y); Y=0&BY =Q.

The optimal feasible solution Y? of the bilinear function of this
programme is the value f(X? Y3} which is not less than the previously
.calculated value f(X?, Y?). The computed vector ¥3 is inserted into the
“bilinear function to yeald the linear programme:

max f(X,Y3) X=0& AX =P.

The optimal feasible solution X3 of the bilinear function of this
programme is-the value (X3, ¥3) which is not less than the previously
calculated value f{X? Y3?}). Having completed the second diteration weé.
-obtain sthe third feasible solution:

XA
703 =

Y3

the bilinear function of which has the value:
= f(X3,13) = f(Z%) = (Z¥)T F Z%.
The calculated feasible solutions satisfy the inegualities:
hishsh

By repeating the iterative procedure we arnjve at increasingly bat-
ter feasible solutions all of which, including the second one, are extreme
points of the convex polyhedron K,. The procedure is completed as soon
as a feasible solution is repeated. Since a known feasible solution can
no more be improved the procedure is completed after » iterations when
we arrive at '

Zn, = Zn—1l, n—1

As the number of extreme points of the convex polyhedron K, is ti-
nal, the described iterative procedure is, sooner or later, completed.
The maximum of the bilinear function is one extreme point of the -
convex polyhedrom K. This function can have a maximum at several dif-
ferent extreme points. We consider a number of different local maxima.
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Fach local maXthum corresponds to one startmg feasible solution Z4,
and can be calculated by the described iterations method. If the bilinear
functiod has only one maximum, it can be calculated by the described
method, drrespective of which feasible solution we start calculating. If,
on the other hand, the problem allows for a number of local maxima
the maximum, calculated by this method, depends upon the choice of

initial feasible solution.
Using. the method described we can calculate only one of the mu= -
xima of the bilinear function, which, however, is not necessarily the
highest one. In spne of this deficiency the described method can be
applied, to every given feasible solution which is not optimal. When
dealing with problems of this kind we start from a feasible solution,
known to be or intuitively felt as good and then Jmprove it by the de-
scribed method until the corresponding maximum is reached. :

IV, PARCELLING OF POLYHEDRA

It follows from our discussion that the convex polyhedron K, has
the extreme points:

EL, EZ, ..., EY,
while the convex polyhedron K, has the exfreme points:
! 2 v
E,, Ei, ..., E,.

_ If we choose a certain. point on the polyhedron X, we get the
linear programme for Y

LP(Y): mex f(X,Y); YZ0& BY =Q,

with the optimal feasible solution, let us say, at the extreme point E A
of the polyhedron K,

G.( E ) should be the set of all those points of the polyhedron X,.
for whlch the corresponding linear programme LP{Y) has the optlmal

feasible solution at the extreme point Eﬁ of the polyhedron K.

We say that point X, for which the corresponding linear program-
me LP(Y) has an optimal feasible solution at the point E%, gravitates
towards the extreme point E" In this case of the word gravitating

G[E*" » ) is the set of all those points X of the polyhedron X, that gravi-
tate towards the extreme point E , of the polyhedron K,. According to
this terminology, the G.( Ejﬁ,‘ will be from now on, referred to as the

gravitational field of the extreme point Ef of the polyhedron K. A gra-
vitational field can be defined as. follows: :

The gravitational field of the extreme point E;‘. of the polyhedron K,

is the set Gx{Eij! of all those points X of the polyhedron K for which
the corresponding linear programme:

3 Ekonomska analiza
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LP(Y): max(X,Y); 'Y Z 0 &BY =Q

has an optimal feasible soluuon at the e.xtreme pomt Eh
To the extreme pomts

: Ej, EL ..., E -

of polyhedron K,, thefefore, correspond, sucesswely the followmg gra-
vitational fields m polyhedron K,: .

GuEL), GE(E,), :.., Gy(E,).

Slmllarly we determine the gravitational fields in the polyhedron'
K,. If we choose the determined point ¥ in the polyhedron K,, we ob-
tam for X the following.linear programme:

LP(X): max f(X,Y); X = O & AX = P,

which has the optimal feasible solution, let us say; at the extreme point

E% of the polyhedron K,. G,(E%) should be the set of all points of the
polyhedron K,, from whmh ihe corresponding linear programmie LP(X).

has an 0pt1ma1 feasible solution at the extreme point E%: the set of all
these points ¥ of the polyhedron K, forms the gravitational field of the

extreme point E£ of the polyhedron K..
To the extreme-points:

1 2 - u
Ex) Exy .. -gEx

of the polyhedron K correspond, successively the following grévitatio—
nal fields in polyhedron K.

Gy (Ex), Gy(E%), ..., Gy(E¥).

The following theorems are true for the gravitational fields:

Theorem 1: Bach gravitational field is a convex set.

‘Proof: The theorem will be proved for any gravitational filed

x(Eﬁ,) which is a part of the polyhedron K,; the proof for the gravi-

tational field G,(E%) which is part of the polyhedron K, is an analo-
gous omne. '

According to the deflnmon of a grav1tat10nal field, all those points
X of the polyhedron K, belong to the set G,(E" 3) for which the linear
programme:

LP(Y): maxf(X,Y);Y Z0&BY = Q

has an optimal feasible solution at the extreme point Ei’. of the poly—v'
hedron K,. In fact we have to prove the following theorem: If

X! C G(EY)



DILINEAR PROGRAMMING _ . ' 35
X2 C Go(E"),

X! 4 (1=—p) X2C Go(E);

snce in a convex linear combination, p satisfies the inequality:
0=p=1

yriev The. fact that the point X! is an element of the set G,( Eﬁ’, ) means
that- the linear programme: ,

¥
=

_LP(Y): max (XL, ¥) = max ((X)T C Y); Y Z0&BY =Q

SO

: has an optunal feasible solution at the extreme point E;‘ , for which the
~ ob; ectlve function has ihe greatest value

(XI)T C E%.

. The fact that the point X? is d4n element of the set G, ( Ehy ) means
“.. that the linear programme:. _

LP(Y): max f(X? Y) = max ((XZ)T CY, Y=20&BY =Q

has an optimal feasible solution at the point E’)‘, For which the objective
| ‘ (X?)T C E".
The fact that the ‘convex linear combination
p X' + (I—p) X?

of the points X' and X7 is also the element of the set G,(E") means
that the linear programme:

LP(Y): -max f(pX' + (1—p)X?, ¥) = max ((pX! + (I—p)X*)T CY;
Y Z0&BY =Q .

has an optimal feasible solution at the point E? for which the objective
function has the greatest value

(pX* 4 (1—p)X2)T C E}.

Let us suppose that the last linear programme has an optimal
feasible solution at another point Y .of the polyhedron K, and not at

the point Eﬁ In this case the inequality: '
(pX* + (1—p)X2)T CY > (pX! + (1—p)X))T C Ej

3*
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and, as well as the inequality:

p(XUT CY + (1—p)(X3)T CY > p(X)TC E_}: + (—p)(XH)T C E?

would be true. It follows that at least one of thé inequalities:

(XI CY > (XYT ¢ Eh.
(X)T CY > (X2)T C E.
- should hold true. This is, however, impossible since thé extreme point

E; is the optimal feasible solution of both the first and the second linear
programme. And thereby the theorem has been proved.

The gravitational fields of the polyhedrons K, and K,, respectively,
do not cover each- other, except perhaps at the points lying on the boun-
dary of the gravitational fields. That is why no internal point of a gra-
vitational field can be, at the same time, gravitational point of another
gravitational field. This quality is the consequence of the theorem which
we are going to formulate for two determined gravitational fields, but
is evidently true for any pairs of gravitational fields.

Theorem 2: 1f
X! C G(E})
and if
' X C G,(E;),
where
B, + E3,

on the straight connecting line, between points X! and X? then there is
cne point at the utmost that

X CG(EL) & X C Gy(EL).
is true; which means that among the convex linear combinations
X =pX' + (1—p)X2,~ 0= p=1

there is not more than one point X which at the same time belongs to
the gravitational field G.(E,) and to the gravitational field G,{ E_f)-

Proof: The relation
' X'C G, (E})
signifies that the linear programme

LP(Y): max (XY)TCY; YZ0&BY =0Q
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has the optimal feasible solution at the point E, and the maximum va-
Jue of ‘the objective function

(X1T C E}.
“ The relation
’ X2 G(ES)
shows that the linear programme

LP(Y): max (X3TCY¥Y; YZ0&BY =Q

has the optimal feasible solution at the pomt EZ % and the maximun
value of the objective function
] -
(X2)T C E3. .
'L'ét'us take the convex linear combination
' X = pX! + (1—p)X?
of points X! and X? This linear combination lies on the straight con-
necting line between the points X! and X% We have to prove that there

can be at most one point X, and at most one number p respectively,
whlch satisfy:

X C G(EY) & X C G(E2).

The relation
X C G(E})
shows that the lincar programme

LP(Y): max (pX' + (I—p)X)TCY; Y Z0&BY =Q

has an optimal solution at the point E!, and the greatest value of the
objective function
g (pX! 4 (1—p)X2)T C E,,. :
The relation :
X C G(E2)
means that the linear programme .

LP(Y): max (pX' + (I—p)XJT CY; Y Z0&BY = Q

has an optimal feasible solution at the point E2, and the greatest valuc
-of the objective function

(pX' + (I—p)X*)T C E-
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For the convex linear combinations
X = pX' + (1—p)X2

which belongs al the same time to the gravitaional field G_M{E;.) and to
the gravitalional lield ('}‘\.(Ef.) the last two grealest values of the objecli-
ve [unction must be egual. It follows that convex lincar combinations
correspoend Lo the equalion:

(pX' 4+ (l—p)X3)T C £} = (pX' + (l—p)XY)T C E2,

Ivom which we can culeulate Lhose values p that determine all points
on the straight line between K and H? that ure common io botlh gravi-
lational [ields, With regard to the unknown p Lthis equation can be either
contradictory or lincar, in no case, however, can it be of a higher de-
gree. IF the cquation is linzar, there exisls only one solulion, only one
value p, und therclore only one point on the connecling line, belonging
lo both gravitational lields and delimitating them. 1 the equalion is
contradiclory, there is no point on the connecting ling that would be
common to both gravilational liclds. The siraignt connecting line can
in no case have move than cne point thal weuld be cemmon o both
aravilational fields. And thereby the theorem has been proved.

Pheorem 3: The points on (he boundary of two gravitational fields
[orny a canvex scl.

Proof: Il points X' and X7 liec on the boundary of the gravitatio-
nal fielis Cr'_“(f.i",l.J and G,._f'f!'f-)‘ then their convex Tmear combinalion

X pXU o (B—p)XP

lics on the buundary off Lwy sravitalional ficlds.

[ the point X7 lies on the boundary of 1he eravitalional fields

GE,) & GET)
Lhen

X'C GJE,) & X'C Gli})
is true and the corresponding lipear prograntme
LPIY): max (XYY CY, YE0&BY =0
has two oplimal feasible solutions
. & I3
for which, The lwo grealesl values of Lhe ehjective funclivn are equal:

(XYTCED = (XTC T
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The same applics to point X2 If the point X2 [es on the border of
both gravitational ficlds, then the corresponding lincar programme has
twe optimal leasible solutions, for which both grcatest values of the
objective funclion are also equal. Now let us observe the convex linear
combination

X = pX! + (1—p) X2

ol these two points,

0 . . . . . 0 - 1 .

Since X' is a peint of the gravitational licld G,(E, ) and since X?
is a point of this gravitalional field, the convex linear combination is a
point of this gravitational field; for the gravilalional [ield is a con-
vex sel.

Same applies to the second gravitational Jicld. Since X' is a point
ol lhe gravitalional licld Gzt(EJ].) and since X° is a point of this gra-
vilalional lield cach convex linear combination is a peint of this gea-
vitational ficld. And thercby the theorem has been proved.

Further, it can be proved Lhat Lhe lincar programme, corresponding
lo the convex linear combinalion, at the poinls

B, & [Lj
has cqual greatest values of the objective [unclion. The equation
(pX' + (l—p)XYT C Jih = (pX' - (I—p)XY)T C Eb,

is true, since the following cqualions ave Liue:

2
¥

(XU Oy = (NP
(XYTCI = (NP O L

It Follows fram the theerans proved that the polyhedeen &K, is bre-
ken up into individual gravitational ficlds which are convex sels 1hat do
nol mutually interscet in pairs excepl porhaps al houndary peinls, All
boundary points ab each of lwo gravilalional liclds form comves sels.
Thatl is why the boundavy poinds [orming the bhorder between lwo gra-
vitational fields, lie on a hyperplane; as each gravilalional ficld is a
scclion of the convex polyhedron K, aud of the semi-spaces delermined
by the corresponding hyperplanes, each gravitational [ield is also a con-
vex polyhedrorn,

Thus the convex polvhedron K, can be parcelled into the gravita-
Lional ficlds:

Gy ), GAER), .o, GUAE ),

that are convex polyhedra and that do not cover each other, except pei-
haps at boundary poinls.
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Slmllarly also the convex polyhedron K, can be 'parcelled into the
gravitational fields:

G,(EL), GE%), ..., G,(E%),

which are convex polyhedra that do not cover each other, except per-
haps at boundary points.

It is clear that some of these gravitational fields can be empty
sets. .
Having parcelled the convex polyhedra K, and K, in the describ-
ed manner, we can determine the local maxima, w1thout any further
calculation by mere determination of the gravitational field to which
certain point belongs. The whole procedure of determining is based
upon the previously treated method of itérations.

The starting-point for ihe iterations is the first feasible solution:

X1
=
Y1

to which the value of the objective function

f(Z1) = (X}, ¥*).
corresponds.

X' is a point of the convex polyhedron. K, for which the gravita
tional field is detemined as say G,(Y2). The point ¥?2 say belongs to the
convex polyhedron K,; its gravitational field is say G,(X?}. In this way
we have arrived at the second feasible solution:

X2
Z22 e , -

Y2

to which corresponds the objective function
f(Z?) = (X2 T?).

We continue the procedure. We determine the gravitational field
to which X2 belongs; suppose G,(Y?). Now we determine to which field
Y? belongs; suppose it belongs to the field G,(X3). Thus we have arrived
at the third feasible solution:

X3
28 = ,

YS

to which corresponds the value of the objective function
f(Z%) = {{X, 7°).

The iterations are repeated as long as a feasible solution is repeated
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BILINEARNO PROGRAMIRANIE
Alojzij VADNAL

Rezime

Clanak tretira teoriju specijalnog tipa nelinearnog programiranja
sa dve nezavisne serije promenljivih &iji bilinearni oblik predstavija
funkciju cilja. Problem je formulisan na sledeci nacin:

Vektori x i y treba da se odrede tako da zadovolje uslove nene-
gativnosti: x = 0, y = 0 i nejednadine matrica Ax £ P, By = Q tako
da bilinearna funkcija cilja dostiZe svoj maksimuni.

Pored ove teorije u Clanku su dati algoritini za odredivanje lo-
kalnih maksimuma funkcije cilja. :



