CONTINUOUS DYNAMIC LINEAR PROGRAMMING
Viljemm RUPNIK*
1. INTRODUCTION

In recent times we can see that in management science a very
strong emphasis is being given to control theory and systems analysis.
Thus, many classical optimization methods must be adapted to serve
in problem arcas concerned with dynamic systems, their stability and
similar questions.

Im this :paper we explore the possibility of using linear programm-
ing techniques in contral theory.. A dynamic version of the usual
linear programming formulation has been proposed, and thus we arrive
at a class of continuous dynamic linear programming problems whicl
appears to be worthwile considering in the field of management
science,

2. STATEMENT OF THE PROBLEM

In the theory of linear programming we face the {ollowing
problem:

opt (¢, x)
Ax = b (1)
x>0

where: ¢ = (¢,,...¢,) 13 an n-dimensional vector, detined on sorme
real-valued domain of an n-dimensional vector space; x = (x,,...x,)"
is defined as an n-dimensional column vector, belonging to an n-di-
mensional real-valued vector space; b = (b,....b,,)' is an m-dimensional
vector, being an element of an n-dimensional realvalued vector space;
and finally, A being an m x n matrix of real constant coefficients.

Problem (1} is called a linear programming problem in standard
form. A solution to problem (1) — if it exists — appears as a vector x
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that satisfies non-homogeneous systems of linear equations in (1),
having all components nonnegative.

Starting from (1) we define a new problem by introducing the
following functions. Let us define: time variable t, which ds continuously
defined on the closed interval [o, T]; ¢;(#), j = 1, ...n as real-valued
scalar functions, defined for each f ¢[o, T] and being at leqst piecewise
continuous and uniform, but arbitrary otherwise; x(8), j =1, ... n
as real-valued scalar functions, defined on [o, T'] as unrfoa“m nonnega—
tive and continuous or at least piecewise continuous; b;(t),i = 1,...m,
as real-valued scalar functions defined on [o, T].as uniform, nonnega-
tive and continuous or at least piecewise continuous and piecewise
differentiable.

A matrix A remains to be defined as in problem (1). We want to
find a vector x(t) = [x,(1),... x,(¢)]° that satisfies a system of equa-
tions Ax(t) = b(t) and bILI’LgS the optimum value to [c(t), x(¢)] for
every t g [0, T). Th'us we arrive at the followmg problem

optle(t), =1 .
Ax(1) = b(1).
x(t)y Z o

@
o<t<T

-

In the problem above, we allow both ¢(¢) and b(t) to vary aver time
and for that reason we shall call it a continuous dynamic linear pro-
gramming problem. We shall try to work ocut the compuiational algo-
rithm for problem (2).

It is convenient to tackle this problem first by assuming:

N

¢; (t) = const; , ostsT
' 3)

j=1..n

This will help us to analyze the fundamental structure of a class
of continuous dynamic linear programming problems like (2). The
objective function is linear in x(¢) and the constraints are also linear;
we have therefore a kind of linear programming problem.

On the basis of assumption (3) we have the following subclass
of problems:

copt [e, x(D)] -

CAX() = b(t) |
@)

[ J

which can be called «a corztuzuous b- ciynamzc lmc/lr programming pro-
blem. The approach we shail use will show that.parametric -linear
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pnog-raxmm]ing problems form a subclass of problems (4), because we
assume here a general nature of vector b(t).

Similarly, by assuming:

b(t) =const;, o<t <T,i =1 ...m (%)

we arrive at the following subclass of pr-obléms

opt [e(t), x(2)]
Ax(t) =D {(:‘const}
x(t) Z o

]

|

' (6)
o<t<sT }
which can be called a continuous c«dynamic linear programming pro-
plem. We shall not discuss (6) at any greater length, because tthe
relevant approach is a use of sensitivity analysis in linear programming
problems, aimed at criterion coefficients, We shall rather show @
solution procedure for (2) as a kind of synthesis of solution procedures
for problems (4) and (6). Thus, we shall first discuss b-dynamic sub-
problems in detail. It will be clear how to deal with a c-dynamic
subproblem, as well as how to solve the original problem (2).

At the end we shall show an application in management science.

3 STUDY OF A B-DYNAMIC SUBPROBLEM — A FEASIBILITY
ALGORITHM

a) General Cutline |

Let us give an outline of the procedure we would like to establish.
We shall try to solve problem (4) at t=o0 by the simplex algorithm.
When using the simplex algorithm, the choice of an admissible basis
depends on coefficients a;, coefficients of objective function and the
values of the right-band sides of the successive computational tableaus.
When a vector which is going to be introduced into a new basis 1is
determined by the smallest negative coefficient c; of the objective
function, let us say ¢, a veclor we eliminate is indicated by that row
index r for which the ratio between the components of the right-hand
sides and coefficients a;, reaches minimum value. As the components
of the right-hand sides change, i.e. when the bounding functions are
changing with time ¢, so the index r will change, indicating the smaillest
ratio. We shall have to find that value of ¢, say ¢ =1, where index r
moves from its present position to some other one. From t' on there
wil] be the same basis again, used up to some other point f =1t”, at
which we have to switch to another basis. . L e

In this way the whole.interval {o, T] will be partitioned into
subintervals, where on each of them we shall have some basis improv:
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ing the value of criterion function. We shall have a sequence of trans-
formations for the second iteration covering the whole region [0, T].
At the same time we shall have to record the analytical expressions
for the whole set of bounding functions, corresponding to the given
interation. We shall, for the moment, assume they are monnegative
everywhere an [o, T]. Let us now start to work out the -solution
procedure.

b) The First Iteration

Let problem (4) have a canonical form so that, using Dantzig’s
simplex algorithm, the first feasible solution can easily be read off
at t = 0. Let us denote by

b (1)
b() (t) —

bY, (1)

the initial bound b(f) to emphasize its belongingness to the initial
tableau which is the starting tableau for the first iteration. In ge-
neral, let

b® (1)
bO @y =] - (7)
k
b3 @
mean a bound belonging to k-th iteration at time . A subinterval on

on which expressions like (4) are defined is mnot greater than the
initial subinterval. Let in general

k k
AR — (af.j) (8)
be a matrix of coefficients of the constraints in problem (4) obtained

after the k-th iteration for a particular ¢t on a segment of [o, T]1. The
initial tableau therefore is, for t = 0,

A® x@ =™ (0) )

where A® = (4{)’) and
[ " ©)
¥ 0 = |
% ©)
Let min ¢; = ¢, <o be determined and form the ratio b (0 ja,, i =

= 1,...m, The row index r of a vector which will be introduced into
a basis is now determined by
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(") (0)
0 < .b" _-.(.9) == min bL(O) =0
29 i a®

rs i

Using the clement g'Y as a pivot element we transform the inigial
tableau at 1 = 0 by a matrix

(0)
a
i1, 0 — s ]
0
i a)
0 = ! 0
T“ == : OJ 3 (D) 3
H ars H
g i
| (0) i
. ]
! afy) |

So, after the first interation, we have the constraints of problem (4)
in the following form

7., =2 AP (0 = T 5% ) (9)
Let us write')

Too A®™ = 4D and T,, 5™ (©) = b® (0)

Before continuing a simplex algorithm at ¢ = 0 (this optimization
could be called a point optimization) we shall try to determine all
the values of ¢ > o such that:

ORI 6

min o ®
. ais ars

which means that the same transformation T,, may be applied in the
first iteratiom for all o < f € ¢, where point t’ must yet be determined.?)
We can do this as follows.

Let us first assume that we have no pair of identical bounding
functions fin amny iteration on any of the subintervals. For the fikst
iteration on the first subinterval these functions are bEO) (t),i=1,...m.
But according to the simplex algorithm we shall have to consider the
modified Function b,(-o)(t)/aﬁf) , £ = 1,...m. Consider the function
b7 (£)/a) defined by (9). In order to obtain the region or subinterval
on which this function is minimal we have to check all the possible
common roots of odd order of a set of equations

) In further text we shall simplify the notaion by writing T (r, 5) instead of Trs -
and &) (r, 5) instead of b'(_:). All simllar expressions will be put in this form.

% We have assumed sll bounding functions to be nonnegative for all interations. A
somewhat broader case will be discussed leter (see: An Infeasibility Algorithm).
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o o0
0
0(0) a&:)

rs

’i_—’tr)i:l,-v'-) n (10

If there is no such root inside [0, T], the function b, (1)/ a'y remains

minimal throughout [o, T]. If there is a point ¢ =1 which is a root

of some odd order of (10) for some i, let us say p, then the r-th upper

bound, i.e. function b{"(%)/ ,®is minimal on [o, #']. Then we investigate
rs

the function b{’(®)/ ,(» and try to find out whether this function is the
s

minimal function or not on [t T] by checking all the possible roots
of and odd order of

(0) RONT:

__bp (z)—:_:_’___,(_)_ N l ¢ p) l: ]J e oM (IO.)
) (0)

a](;.]s‘ apos

, . ()
If the smallestsuch root, say t = t” < T, belongs to a function bq (t)/ aly)
, gs

the pth modified upper bound b’ (f), i.e. bz(ao)(‘)/ akO) is minimal on
DS

’ 14 T ' L 1 . 1 ™
[, t”]. We further investigate the minimality of the function bq (t)/ "f;?
in some region right from t”, by seeking some roots of an odd order,
etc. In such a way we obtain subintervals [o, '], [¢', "] ... (=D
t™ > T]. Let us mow introduce a uniform and systematic notation.

Let ,\ denote that row index for which we eliminate the corresponding

vector from the current basis of the initial tableau (in carrying out

. . - : h l
the first iteration) on the subinterval [¢._y, t,] of [0, T], and let st

.pave a similar meaning, denoting the index of the vector introduced
mto a (new) basis.

We must therefore write (9)

T (AD, ) 49 5O =7 (4D, D) 4O ©) )
apd let it be, in short

T(AY, sy 4@ = 4 (A, sP), T(AY, () 6P © =50 ¢y 5 0
Here 7 "is defined by

O, 2

a(O)( iV, sgl)) i W

for the first iteration on the first subinterval. In a similar way, ex-
pressions (10) and (10°( have to be changed. As the subintervals
Obfained by the procedure above belong to the first iteration, we shall
write them as being defined by the points
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m i - ()
0<’ <ty <ot =T,

At the” same time we have found a sequence of transformations

ety (L (1 1) e 1 ,
Ty = {T( A7 st Y, oo T (AR, sV}, where T( A0, s Y, g
is defined as T (r, s). ‘
Thils, weé have the first computational tableau on the subinterval

( £, £] as follows:

=1
T (D, ) A x =T (", ) s g
0’*-'. ‘I;-."A.

A ) x @ =8 s

and the corresponding recursive formula

® (5, sp(fcl_l)) T (0, P 4® = 4 (rGHD, D)

for a region (f,_y, i, |C(t-—1 f-] we have yet to determine) can be used.

¢) The Second and Further Iterations

Let us now start the second iteration at ¢t = 0 .and let an improv-
ing basis be introduced by the transformation 1 { 2, 5 where the
indices r'? and s®, have an analogous role to those appearing in the
first iteration. After the second ‘iteration at t =0 is completed we
try to-extend the region of f.so that he basis just obtained will continue
improving the value of the objective function (this operation ropresents
a part of what we shall further call a local optimization). We do this
as in the first iteration. We find a set of minimal functions on [o, T],
step by stoep, starting with the function

p( (r1 5y rfz) t)

oD ( AV sD)

which is minimal at least at a point ¢ = 0. In such a way we détermine
a corresponding sequence of points

0<tD <P <. < zf? =T

Here, for example, t{? is determined as follows. We check the region
of minimality of the function being minimal at t = 0. If this region
is greater or equal to [0, ("], then 1 =" Let us now assume that
there are one or more minimal functions, different from the iniizal
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one on [o, 1{""]. We record the increasing sequence of the roots of ar
odd order, i.e. we take down the points of intersections of a2 set of
minimal curves on ithe reguon Lo, r,')] The fnrst clement of this increas-
ing sequence is the point 2 , the second is 157, etc., until we hit point
tm which we identily with 1(2) Then we repeat the same procedurc

on [t“) {91, starting with the minimal function at #{ = r?and de
(1)

termined by the transformation 1(r2 . s;_”) We continue in this WuY.

until we reach T. In general, for the i-th interation we can construct
the sequence

0= A"k .. <P =T i=1--- K

It may, of course, happen that the number of iterations varies by ¢,
let us say that we have K as a maximal number of iterations through-
out [0, T] and thus we admit some transformations to be identical.
As a whole, we obtain the following transformation matrices

T (A, s i= 1, .-« K j=1--- |

which have to be used when optimizing the given objective function
at the given constraints ou [o. T].

However, when switching at point ¢ = t{", from (", -"]”)f()“i
example, being used on [0, #"] to transformation T (/4" 5$") which
is going .to be used on ( £{", zg”] , we have?)

5 (s rULJ) 5O (ry ;1Y

a® (A" (l)) 20 (D, i)

i. . minimum occuns for iwo different indices, r{" and " . Degeneracy

will occur in the next step. So, at all the switching points ¢ “’ belonging
to the i-th iteration we have to apply the degeneracy pmcedure start-
ing with (i 4- 1) -th iteration.

We have assumed so far that there is no pair of identical (coincid-
ing) modified functions of any right-hand side. In the opposite situation,
if at a point ¢ _T_;a degeneracy occurs, we have a sequence of trans-
formations T( r7", st?), j = 1,...K, which has to be used on (2, {{"]

where (" is a point of switching to the next minimal bounding function..

d)} The Complete Representation

If we assume all the bounding functions in any of the iterations

to be nonnegative, we can summarize the procedure as follows. The

%) Here, we simply write 5(°) (r.; #) instead of £°) ().
)
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linear programming problem (4) can be solved by a sequence of point
and local optimizations.

First, we have to find all switching points of the bounding functi-
ons beloinging to the initial computationai tableau. Thesc points define
subintervals with a uniquely determined modified minimal function
and corresponding transformation matrix. This transformation is used
at the feft-end point of each subinterval (a point optimization) as well
as for any ¢ iaside that subinterval, including the right-end point (a
local optimization). As a set of new bounding funtions does not have
to have one and the same minimal bounding function as in the first
iteration, we start determining all the possible switching points belong-
ing to the modificd bounds by the transformation in the first iteration,
starting with the subinterval [o, "], then( tP, t(zl)] otc. This means there-
fore that when reaching ¢ = T in the way mentioned above for the first
iteration, we start the second iteration at ¢ = O first (a point optimiza-
tion). The number of switching points does not decrease, with the num-
ber of iteratiens. In the given interation we have some (if any) newly
oblained switching points from the current iteration plus the switching
points from the previous iteration.

After cach point optimization we have to optimize locally; tha
means we have to determine the region on which the same feasible
basis can be used as at the initial point of that region. In order to
continue the local optimization over the next region, we have to have
analytical expressions for the right-hand sides in each iteration and
cach subinterval into which [o, T] is going to be split.

As the transformation used in the i-th iteration on the subinterval

(42, T is

b(;u—l)(f._ o D [)
LIV sy i—1) o . i—1y T T .
B (re 52, jr 1) = BT (ress, jin—al

- (1)
gV (1D, s0Y

we have, after the k-th iteration, using (1i) as a reocursive on a subin-

torval, say (lq_y, o] (teei, 1o}

8 (ro 50,7 =L} (6 Case. i 0} ar)

ie. the j-th bounding function obLtained by the k-th iteration as a linear
form of initial bounding functions ' (e 5o, J; =5,

We assumed all the bounding functions to be feasible every-wheie
on [0, T] and for any iteration. Let us consequently call the solutton
procedure discussed up to now a feasibility algorithm and demonstraie
it by flow chart no. 1. '



14

- _—

EKONOMSKA ANALIZA

Flow Chart No. 1: A Feasibility Algorithm

l A Point Optimization (by the simplex method) - | -

¥ L v
PR et — |
determine a vector to be introduced (we obtain ‘
Ly ‘(j) :
index s{") ,
; _ e ,
find ! |
! b (ry 5y, 171 1=0) by sy, t=0) ! o
Ry T VT
at™ )( RS sg')) i a"Y(j, s{f ) ]
| (we obtain a vector with index r{” to be eliminated) |
| o
¥

| transform the computational tabelau by a matrix
TP, sf’))md find a new feasible basic solution for
’ Xy vt Xp4ym at =0 ‘

A Local Optimization |

b(i—l)(,.1 sp, 1D ,)/ a(i—l)( A Sl(i))
with each of the other modified ‘boundijng. fﬁctions :

By 5y, j5 1)) @D G ) | ;
i. e. find all the roots of an odd order of the eguation
a(i—l)'(j, s%i)) b(i'i)(rl 51s I'gi)'t) = a(i'—])( r(li), s}“) b0y 51,450)

find all the points of intersections of the modified function .. - ‘

¥ —
l if the smallest root is, say ¢ we have .
|l a) ) =, or b) {7« 4,1
. : . i

X, 4+, using (147)

use transformation 7( r{?, s{”)"
on [0, "] to find a new |~

basic feasible solutionx; - - -
X4, using (147

use transformation T( rﬁi), S}i))

on o, t(,i_])] to find a new
basic feasible solution x;, - - -

i : - : ‘ Y

-

start a point optimization “at x

start a point optimization at : : zatl t |
t=t) <" Vio obtain 5 = 1" |

t = ¢t to obtain #
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4. Study of a b-dynamic Subproblem — An Infeasibility Algorithm
a) General Outline

So far we have assumed the nonnegativity of all the bounding
functions b (r= sc, j; 0 for all iterations and all subintervals (ISL )
,(1")]‘ However, this is not, in gemeral, the case, except for the initial

tableau.

The optimality of a given basis is invariable so long as it gives
a feasible solution for x;(t), j=1,...n An infeasibility ocours when
for i €{1,...m} we have b p. 5., j; t) <o. We shall discuss what
additional algorithm will have to be added to the computational pro-
cedure described above if infeasibilities occur.

In order to assure the feasibility of the solutions, we have to In-
vestigate the bounding functions (11) with respect to their zeros and
oradients. It will be seen that two important cases arise here: the sma-
llest zeros of an odd order of the obtained bounding functions (11)
arrived 'at in the i-th iteration where for some value of t some infea-
sibilities occur coincide (Case B) or not (Case A).

Let us consider the subinterval ( £, £71 and let the function
b (re s, j,; t) become zero at ¢ = 7 < {and be negative from there
on, so that we have

B rese, ji =0 for (& << j=1, 0 m JF

B e se, jis ) =0 for A e 7O

= 1

b e sz, jir < 0 for }(:i) < < tg‘. ;

~

A feasible basis obtained at point ¢ =2, in the i-th iteration
will therefore remain feasible on 9, 797, At point 1 we have to
find another basis which will be feasible again. That means we shall
have to find a new set of feasible bounding functions. This operation
may be called an infeasibility algorithm. Despite determining the subin-
terval (t{ 77 1 on which only one and the same bounding function

1—1,
is minimal, i.e. throughout which one and the same transformation

7 (A s$?) could be used, we have to check the feasibility of all
bounding functions (11) on the subinterval (7, tf’]-

An infeasibility algorithm will formally consist of a pivoting ope-
ration. We shail replace variable x, and introduce another one, say
x,, of course, if this is possible at all.

b) Detailed Discussion

The constraints of problem (4) have at I = 79 the following
form (for the sake of simplicity we have not denoted a particuiar

basis):
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ut+m . .

E (,) X ({(r)) - b“) (f': S—, |,‘ vi',(:l))

j=l1

n+m ) )

> afr‘) xi (’m) = b9 ("'- St, P! 7(:”.)

j==1

n+4am . . . .
0 5 (1) = B0 e se, s 1) < 0

i=l1

n- 1—m ‘ N
'("‘} 3 (f(')) = ()(” (I'T S, M, -f(_.'))

_/—l

After the transformation we have

(i) NG
nim b (,.. se, protl )
(t) (i) ) (. P €5 A ) I e
xj (" ) b (’T <, L ’lq) g a(:)
= »q
ntm b(i) r= 8z J p , l&”
5 G0, (79 (e 52, p. 1
pj *i\lx (i)
j==1 a,,
nym ( o ) b“’(r» $=, p !E‘))
. -y _ { ;. (‘ S [
Z\/ aji j “]' (’ T ) =b (I’r St i ) a ()
=1 g

g B0 52, 20 50)

“ha )
pq
nim 0 - b (,' se, m; }'(Tr')
—(i (N Dof,. . Lo Ho
Z airlr)r Xj (t(fl) = b-( ('1 St Wy, ) — by (”
i=1

Tpq
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where
A =T (50, &) A” = (3)
First of all, it must be

(i)
ajlq/a(i) >0
rq

From this it follows

: () i
if ahqg 0 then a},‘q) =0

In order to ensure a new set of feasible bounding functions, we
have to admit a case

a}l'}z < 0 and a) > 0 (12)

only, because all
S (r-p Sty Ji "ff:i)) >0, =1, - m; jti.

Case A-I: Let us assume that there exists at least one negative a}-’}, ;
if there are more of them, we choose

0 _ (@)
@i = mja" @, < 0 (13)

We determined here a vector with index ¢ to be introduced. Next,
we shall choose p so as to minimize a new bound, i.e. we shall take
only strictly positive bounds into account when determining a vector
to be replaced, first of all, on the basis of the following criterion:

_b(.’)(rr 51, p‘_ _-t‘g’)) _ min b(l) (r‘l' St j'. —t—.(;)

Q) ()
Apq J qq

(13%)

If there are all b (res<, j; T9) =0, j=1,...m; j=j, no feasi
bility can be assured, and the problem (4) is solvable only up to the

i-th iteration on [o, 72')]. We shall disouss this question in detail later.

Let us assume that there is at least one positive upper bound
at t = 7 different from b'”? (re st jrs 79)-
By (13') we found a vector to be replaced from the basis; let us

assume all (13’) be monotonically differentiable. The correspond-
ing function defined by (13" could be wused on some region
(79, 79, where 7 < T < & and T will be determined as a
point of intersection between this function and some other one starting
to replace it at this point as a new minimal function.

2 Ekonomska analiza
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In order to determine this point let us define two nondecreasing
sequences: a nondecreasing sequence F

F= { b(,‘) (I‘-_— 575 J ?Efi))/a(ji) } Jj=1 - | s

and a nondecreasing sequence G
Ao NN R e ]
G = di (r~. Sty /)y t)/“j':') =t j=1, « -+« m

In a case of ties, when setting up sequence F, we arrange its elements
(in a tie) in the same order as they are ordered in G. The same is true
when there are ties in G. When there are ties for the same subset of
elements in both F and G, we arrange them arbitranily.

If the minimal element in F coincides with the minimal one in G,
i.e. when one and the same function has the smallest value and the
smallest gradient at f = 7 then the function given by (13') is used
for the consiruction of a new feasible bounding function which will be
used (instead of b(")(,T sc, jy; t) right from ¢ =7 until a zero of an
odd order occurs (either of the same function we have just introducad
or of some other one).

However, it is quite a special case. Let us now assume that the
two minimal elements in F and G belong to different functions. Let
these two functions be ' '

b(’) rt S+, st b(’) r R —,- t
o0 sz, pi 1) cF B0 se, B 1) G

(i) ) N
Ppq 4 q

A set of bounding functions obtained by introducing the minimal

function (13’) can be used up to a point7.’ which is a root of an
odd order of the equation

a® 5O (e sy pr D) = 0 67(r= 52, B3 1) (13

Now we choose

b(‘) (rT St, D ; t) on (_t ‘(ri)’ ' ?S)] b(l)(r‘: ST, ? : T'({") b(")(r'.' S'i'; P;’T(;)
- if - e >
8O (e 50 7ie) on (T o] oo )
_ | (14)
6D (re sz, pity on (79, 9] if 6O (rese, 5 7Y BO(rs 5w 2 15)
: T 2 n 2
pa rq

B (re s, pit) on (79, ]
t{? being zero of an odd if no ¥ < {7 exists
order of the function b“(r< 55, pi 1)
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In such a way we determine a sequence of sets of minimal feasible
bounding functions from 7Y on up to t¥ . The next point of infeasi-
bility is theéreforc 'cither TW =t  where we repeat the feasibility al-
gorithm as used at ? =70 or W <P | where we change the basis
accarding to rule (14). We apply the feasibility algorithm again at -
When all the bounding functions are of quite a general nature, we
may have more than one point 7% = 19, In such a casc we have to
change the sel of bounding functions at each such point as above.

Case A—II: Let us now assume that alter using the feasible set of
bounding functions up to a point 7 we arnived-at the coefficients
matrix with the i-th row consisting of nonnegative coefficients. It can
casily be seen that no positive new upper bound exists for anv smatl
region right from 7% '

If we multiply the j-th raw by —I1 and introduce an artificial
variable, then by every pivot element alJfor which p=j, q €{1,... n+nt}
both determined so as to minimize the new right-hand side, a new basis
can be obtained which conlains an artificial vecticr corresponding to
the artificial variable. When optimizing in Phase I of the simplex method
we can not get rid of the artificial vairable, which means that the
original problem (i.e. without an artificial variable) has no feasible
solution If the pivot element is nogative, we obtain the same solution
at t =77 as before. No dmprovement has been achieved. This basis
cannot be used further, because it gives one of the optimal variables
the value of a negative bounding function. This means that if all
a})’} >0, j = 1,...n + m, for that row index j, for which an infeasi-
bility occurs at ¢ = 7% the optimizing procedure may terminate with-
out reaching the optimum on the subinterval starting at point i

Case B: So far we have been assuming that all the smallest zeros
of an odd order of the minimal and feasible modified bounding fun-
ctions werc moncoinciding. However, if this is not ithe ocase, we have
to ensure, let us say,  feasible and minimal bounding functions -

B (re sz, Wai o), - B (re sty s ) ‘ (15)

at a point t = 7 which is a common root of an odd order of ithese
functions. According to the procedure described in-A-I there would be
a unigue way of minimizing a new set of feasible bounding functions,
ie we could use the same criterion for determining index p. But, when
determining index s, we cannot expect, in general, all aﬁ?q <o, p=1..k
to occur .in.one.and the same column. If this is the case, no mew
feasible bound can be found. The wriginal problem is therefore feasible
in the i-th iteration on ( Ly _t(.f) 1 only. The detailed discusion of the
situation we just described will be given in Ch. 4,

¢} A Complete Representation

. Let. us now make a summary of the results obtained. We Lirst
assumed ihat no infeasibility occurs as to thé bounding function any-

2#
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where on [0, T] and in any iteration. In this. casc the procedure is
demonstrated by flow chart no. i. Second, assuming some infeasibilities
may ocour on the part of bounding functions, we established an ad-
ditional procedure, which enables us to eliminate infeasibilities if the

following conditions hold:

1) all the smallest roots of an odd order of the bounding fun-

ctions (15) do not coincide at any iteration (i =1,... K) 'on any subin-
] — if maxo g g
terval (12, ] =[o, 7] if j “5':34 a a‘(';r)”

does not occur at the.same g-forall p=1,... A
2) at each iteration we obtain a maitrix -of ooefficients af}’ where

()

we have at least one ay;

< o for that g for which an infeasibility

ocours. Let us now demonstrate an infeasibility algorithm by flow

chart no. 2.

Flow Chart No. 2: An Infeasibility Algorithm

! tind sequcnces of the smallest roots of an odd order of

the bounding functions D (rc 5=, J, 1) on (r(")__“ IE.D] ;

T

let the smallest one of them be T(,” Aa—
!
e e s T e
— —_ ! oo N
\ is 7O < B2 ‘
|
T 7] no + ves

a feasible basis obtained at

t =1,  can be used for a

local optimization on*

(1@, 7]
—12 v

+

no infeasibility algorithm has
to be applied on i

|

o

| (2] |
P i

I are all o} >

j=1 s n+n i

+ no

l find af) = T & < 0;
I the g-th variable will be in-
l troduced into a basis

|
|

+

yes .
the problem (4) ds feasible
on (+,, 7] up to the i-th
interation only

:
2l

* Whea optimizing locally, we record the corresponding set of new feasible bounding

functions.
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|
e
|, form all
. b (rese i 19)
[ l s e T j=1t -+ m only
| [I 0(13
i and set up the sequences F and G
- ¥ o _
: is the first element in F identical with the first element ‘
l in G? _
_-—_”_——_m-_‘_i,-— D_Og_——_-_‘__ ---- T ~L yes T

. take for p the first element**
~in F and G and transform

\ find the solution of (13""); let l
the root be 7’ | i )
- l‘ the tablcau at ¢t = 7 (T" by

\

v

apply rule (14) and record
the corresponding transfor
mation matrix 7 (p<, a<)

optimize locally* by using
T(p=, g- ) on the subinterval

right from 7¥ up to mext

!
|
4

|
|
\ start repeating the infeasibi- 1
t | start the infeasibility algo | | LW algorithm. |

|| rithm on (1, #2,] L T

5. Study of a b-dynamic Subproblem — A Complete Algorithm

We studied problem (4) by first assuming that there was no
infeasibility of any bounding functions. Next we have admitted infeasi-
bilities. Let us now set up a complete algorithm.

We first apply the feasibility algorithm in order to obtain the
first iteration. This gives us a scquence T of transformations in 2.
—b). There is no need to apply the infeasibility algorithm in the ini-
tial tableau because we assumed all initial bounding functions ;% (1)
to be nomnegative. By a system of transformations we transform the
initial tableau and obtain the first tableau to be used for the second
iteration. The bounding functions of the first tableau may become non-
negative at some point inside {o, T1. We therefore start the second ite-
ration by application of the feasibitity algorithm on subinterval [o, V).

This operation may give us a partitioning of [o, t'll)] into subintervals

[o. P}, (P, 2y, - (,22:) , ] (16)

#% {.e. we take for p that index for whizh the corresponding function is in the hHrst
place in F or G respectively,

-

point of infeasibility where |
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so that a corersponding sequence of transformations

2 2 2 2 . S
TOR ) TRy

is gencrated. Before we continue the second iteration on (1, r?)in
the same way as on (t{’, f“)] we have to check some potentnl in-
feasibilities ‘which may occur when (using the feasibility algorithm )
optimizing locally over subinterval (16). We therefore aolply the in-
feasibility algorithm we discussed in section 3.

This algorithm may pirovide us with sets of feasible bounding
functions over the subintervals (16). If on-some subinterval, say
(._» 1] an infeasibility cannot be eliminated, the optimizing proce-
dure terminates with the first iteration, not because we have reached
the optimum valite off criterion function, but because there is no fea-

sible solution frou ‘t,_4 on up Lo l()

If, however, all the infeasibilities are ellmmated by the mfeamblhty
algorithm, we proceed by applying the feaubﬂlt N almorlthm in .the. com-
putational tableaus obtained by transformation of all orwmal tableaus
{obtained by transformations (17) on each respective subinterval) with
the transformations. :

T( 1,15_2), 55_2) )) T(p], S qE’j o T ( pf}, qw. )

; l (18)
j=1 - pl

which (except for the fivst one) have been obtained by using an in-
feasibility algorithm on the subinterval (r}z_’l 5. EG-)-J. It is evident that
a set of transformations (18) is the final one becawsb a set of bounding
tunctions teaSIbtle at a point remains feasible over some nemhboumhooo
right fmm f 9, over which T ( 1(2), S(z) ) therefo*‘e iremains | apphcable
After this region infeasibilities may ;tarL occuring and therefore the
rest of the transformations of (18) to ‘be applied. -

After the application of the LnfcaSIblluty algorlthrn over all the
subinterval (16) is over, we continue in the same way the examination
of potential infeasibilities on all the subintervals,- correspo\ndmg to
(7", #"].So, we continue until 7= T. Of cowrsc the second wite-
ration« we obtained does not necessa,rllv mean an 1mpr0vement of the
value of the ob]ective function over all the subintervals belongmg to
this step. If no mf(,a.srbmhty occurs, we certamly unpr;ovc the value

of the objective function. If there are some pomts of mfeasubl,ht}, we

have to replace the original transformation T ( 2, (2)) after some initial

subregion, with a set of transformations (18), Whl'Ch do niot necessarily
bring us an improvement in the value of the ob]ectwe functlcm We
shall try to do that in subsequent iterations. '
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In general, we shall have two types of transformations T( riV,s)?
and T (p}i),qfff)). I{ we arrive at a set of transformations »covering«
the whole [0, T1, for the whole sel of iterations necessary to optimize
the objective function in (4), we shall say that we obtained ¢ complete
set of transformations.

Let us now for the sake ol simplicity denote by

(i) i=1; - - K.
T :

(19)
J; ] = l, I ,

the j-th iransformation used in the i-th iteration, i.c.'on the j-th subin-
torval when solving problem (4} by interchangeable use of feasibility
and - infeasibility algorithms, and let a set of transformations (19}
represent a complete set of tpansformations. Here, w is the maximum
number of subintervals obtained on [o, T] over the complcte set of
iterations.

Earlicr we postponed a discusion of a case when infeasibility
cannot be eliminated. Let us now seec what that means. 1f from some
point, say 2 on some particular bounding function remains negative,
we cannot cnsure a new set of feasible bounding functions. This is a
rasult of an unsuccesful application of the infeasibility algorithm on
subinterval (£, 7], where such a point t:m lies inside that sub-
interval. Tt follows from this that no feasible solution exists on
(’:_“;)1) tf)). In another words, we have succeeded in optimizing the
objective function up to (i-——1) — th iterarion omnly on (t:.“;)l, 197 e,
on (2671, 47D with 20 =71 and 19 =1 Thus, a failure of the
‘infeasibility algorithm -on (29, 9 ] compells us to replace the be-
longing (expected) solution with that obtained in previous iteration on
the same subinterval. '

In a case of succesful application of infeasibility algorithms only
a matrix Tf-") is being used in the i-th iteration on a subinterval (tjil ’
1] and may be a sfeasibility« matrix, ie. a- matrix of the itype
7 (r”, 7 or »infeasibility« matrix of the type T (py’. ;" ). Using a
complete algorithm under the above assumption we arrive at feasibility
and infeasibility matrices, but if an jdentity transformation matrix fol-
lows a feasibility matrix it means that the optinmum has been obtained
in the i-th iteration on (t%2,, 107 .or the optimizing procedure ‘for
that dinterval terminates at the i-th iteration. If an identity transfor-
mation matrix follows an infeasibility matrix, it means that the In-
feasibility algorithm stops the complete algorithm in the i-th iteration
on (¢2,, 1], As to the termination of the whole optimizing procedure,
we have identity transformations belonging lo all further iterations on
(tf,-’ll, t}")]_Thuvsi a solution may be optimal (when the last non-identity

Lt*amsformat'non is of the type T (_rf;i),sj(-"’ ) or suboptimal (in either case).

. We shall fiow demonstrate the whole solixtion . proceduré for: pro:
bléft (4) by flow chart no.-3.; which shows a compléte algorithm, = * 7"
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Flow Chart No. 3.: A Complete Algorithm

apply the feasibility algorithm on ( {7V, A=Y] to |

—,|  obtain transformations R —
T(rf:i), s,(:i)) T=1 - @O !
- - \L, — e __
is there any infeasibility on the subintervals }
J (D, 9] L an
T +  yes _ ¥ mo {

transform the (i-1)-th matrix

apply the infeasibility algo- I ‘
on (#50, £7P] by a sys

rithm to obtain transforma
tions

(P2, ai?).- - - T(P, 4))
= 1 .

tem of transformation matri-
ces (I) on the corresponding
subintervals (I1) and check

=1, - - L am the optimality of the obtai-
o) - ned solution*
form the corresponding (mix- i vy .
tures« of transformations _yes _l is D — 7|
(i) i) D Gy L. ‘ J B 1
T( Fo7s S ), T(P]T ;qIT); | ! am—re 2
) (i) : [ R
| T(PuT ’ qur) (IV) ! ’ [ apply the feasibility al- 1t
| S gorithm on (", +{5" |
transform ‘the (i-1)-th matrix | e - - 4
o A
on (45", ('] by asys || SR
tem of matrices (I}[) on the | ' apply the feasibility  algo-
j ' 4| rnithm on [rf)”, t(i)] jie —
corresponding »;=: (he + 1, . ! S
P g .‘:l ‘ start (i+1)-th iteration
subintervals L - !
(50 (15— 1453)
. (V)
and check the optimality of
the obtained solution*
-»-——-—-———--‘{: R e ——_— o nO
R G — - SN
. m_],__ycs ) I

apply the feasibility algorithm on (V) starting with
— < j =0, ie. start (i+1)-th iteration

apply the feasibility algorithm on
— (D, =D
J > Yj+t

*) In this chart we have to check the optimality of the obtained feasible solution. If
it is optimal we record the corresponding subinterval and iteration in order to avoid further
iterations on a given subinterval. As we have seen 21l the subsequent matrices are identical
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6. STUDY OF A PROBLEM — A SIMULTANEOUS APPROACH

So far we have developed the complete algorithm for a continuous
b-dynamic linear programming problem. Let us return to original pro-
blem (2) and suppose we found a solution of the corresponding pro-
blem (4). The partitioning of [0, T] has been obtained through the use
of the complete algorithm belonging to (4). How can we include the
changing vector ¢ (t) into the solution obtained in this way?

We can carry out a point optimization at t = o. After that we
move to the right from ¢ = 0 and observe whether the solution obtained
can be used for any t > 0. As we have seen, what prevented us from
using the solution obtained was the »behaviour« of b (f). Now, we
have two possible causes for stopping the use of the solution obtained:
either the behaviour of b (t) or the behaviour of ¢ (t} (or both). Thus,
after a point optimization at t = o we proceed from ¢ = o to the
right, but we watch both:

1) b (t) according to the complete algorithm for a continuous
b-dynamic lincar programming problem

2) ¢ (t) according to the stability test procedures amounting to
criterion coefficients. _

If the ¢ (1) — stability test fails at any ¢, say ¢’ > o, there a point
optimization should take place (because of c(f) — stability test failure).
If the ¢ (t) — stability test is passed, then a point optimization should
tgkle place at a point ¢ indicated by the complete algorithm for a
continuous b-dynamic linear programming problem.

If we tried to develop a complete algorithm for a continuous
c-dynamic linear programming problem, we would find a procedure si-
milar to the one for the b-dynamic subproblem, although a bit simpler.
Therefore we shall discuss it in detail.

Let us now refer to a b(t) — algorithun which we have discussed
in detail. Similarly, a c(t) — algorithm could stand for an algorithm
which gives us a solution of (6). Now, from what we said above, we
can say roughly, that a simultaneous approach could be used for pro-
blem (2) by applying the approach of bft) — and c(¢) — algorithm
it the same time. When changing ¢, the ‘points optimization take place
at »critical« points indicated either by the b(t) — or the c(t) — al-
gorithm. Thus, we can look for a solution of (2).

7. APPLICATION
a) Optimal product line problems

In operations research we often have to deal with optimal pro-
duct line problems. Suppose we have an entrepreneur who wants to
maximize his total profit accruing from the optimal selection of his
products from a (technologically) feasible set of products.

Let P, j = 1,...n be the products entering into the selection pro-
cedure. Let ¢;, j = 1,...n be the corresponding profit—coefficents,
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and matrix A = (a;),,,, should represent the technology, enabled by a
resource vector b. Thus, the standard formulation of an optimal pro-
duct line problem is

X (c) x}
Ax < b
XzZo
where ¢ is a profit vector ¢ = (¢,,... ¢,) and x = (x,...x,). A problem
like the above is usually called a production — planning problem,

where, of course, this term is very restrictive indeed. A planning period
in business is onz of practical size, say a year or half a year, or even
a month. Let us suppose that business conditions vary in time sub-
stantially. This may force the entrepreneur to act »optimally« more
often than usually. In this case, we can formally set c=c (1), x=x(t)
and b =b(t).

Through such a »dynamization« we arrive at problem (2), which
is a continuous version of a discrete set of optimal product line pro-
blems. There is a need of reappraisal of his product policy, at time t,
when new levels of stocks of materials, labour power, etc. are available,
i.e. an existing value of b (¢) should be taken into account. Similarly,
profit coeflicients ¢; () may have assumed different levels in compa-
rison with a previous production program. Planning periods get shorter
and thus planning tends to control and management procedures; this
is just what we meant in the introduction to this paper.

To see the mmportance of such a control aspect, let us allow that
the upper limits to selling quantities are ‘imposed on an optimal pro-
duct line problem. In the case of an oligopoly, profits ¢; (t), j = 1,...n
may vary substantially, owing to the competiters’ actions, although de-
mand remains unchanged. In such a case, we have to replace A, < b
with:

A (b (1)
x(1) €
E it (t)

where E is a umit matrix and vector m (t) represents the levels of
existing demand. Such a »control-oriented« cptimal product line pro-
blem is extremely helpful in the case of a service oriented enterprise,
where the dynamics in its queues is important so as to include penalty
or damage coefficients and lost profit coefficients into the functional.

' b) Systems approach to economic consolidation and cooperation

Aggregation’ and disaggregation probienis are another case of
the useful application of continuous dynarmic linear programming. We
could conceive that two partners A and B (e.g. enterprises). realised
that they could successfully combine their resources £, and by, con-
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fronting their different technologies, say M, and M, (these are ma-
trices) and selecting among their potential production programs x,
and x, It may well happen that their profits differ, even for the same
production program; therefore, it is reasonable to assume some ¢,
and ¢,  On the basis of the diagnostic theory of economic consolidation
and cooperation, [1], [2], they are able to decide upon a merger or
against it, at ¢t = t,. But such .a desiston might be withdrawn at some
¢ > 1,. We thercfore switch to the following problem, e.g. for a maximum
profit ..

max { fes (0, xo (0] +lew () w0} = F
subject o |
My xy (1) + My x5 (1) < by (1) + by (1)
L) < X () < xa ()
Xy () < xp (1) < xp ()
g () 0, xy (D) 0
O<I<T

where we assumed 1) both resources b, () and b, (t) are additive
(a similar approach can be used if they are not), 2) the two partners
are »coupled« horizontally, 3) X, (1) resp.x, (f) are given the lower
resp. upper limit (estimated or forecast) of demand, amounting to a
set of products being supplied by partner A; X, (1) resp.x,(t) has a
similar meaning.

Suppose that the two partners A and B are willing to be »coupled«
as long as F, > F,(A) + F,(B), where F, {A) resp. F, (B) are optimal
values of functional belonging to A resp. B only with the corresponding
constraints M, x, (t) < b, (t) resp. M, x,(t) < by (t)and X (1), < x,
< x{t), x,(t) Zoresp. X, (1) Sx, (1) S x5 (1), X5(t) =0 with o<
t < T in Loth cases. Thus, the concept of a continuous dynamic lincar
programming turns out to be useful where we want to find F,(A) and
I.(B).

(Rad primljen avgusta 1973.)
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ZVEZNO DINAMICNO LINEARNO PROGRAMIRANJE
Viljeen RUPNIX
Resume

V razpravi obravnavamo problem, kako resiti takSen linearni pro-
gram, kjer so spremenljivke v funkcionalu, koeficienti funkcionala in
desne strani omejitev linearnega tipa odsekoma zvezne funkcije. Za
redljivost tega problema se zahteva, da so vrednosti desnih strani tak-
Snega problema tudi enkrat odsekoma zvezno odvedljive.

Celotno nalogo je mogoce resiti tako, da se najprej lotimo izdelave
algoritima za reditev tak$nega problema, kjer se spreminja samo vektor
tia desni strani omejitev (s tem pa seveda tudi relitveni vektor). Ta
postopek sloni na stabilitetnih lastnostih linearnega programa in so
posebej razélenjeni pogoji, ki morajo biti izpolnjeni za reSitev.

Ce omejeni algoritem kombiniramo s stabilitetno analizo linear-
nega programa glede na kriterialne koeficiente, lahko reSimo prvotni
problem po principu izmenicne uporabe tockovne in segmentne opti-
ntizacije.



