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RATE OF CHANGE IN ECONOMIC RESEARCH*

Rudolf SCITOVSKI and Slavica KOSANOVIC**

1. INTRODUCTION

Certain economic phenomena are often considered in research
through rate of change, Rates of change represent information which
enable researchers to come to conclusions about tendencies and the
intensities of observed phenomena. )

In a.pplucatlons the corn{putamon of rate of change-is moshly carried
out by using the geometric mean of ratios of data (e. g. see [8]). The
basic disadvantage of such an approach is the elimination of the in-
fluence of all data (except two of them), because the condlusion is car-
ried out on the basis of the first and last datum. Besides, using
the geometric mean, the rate of change can be computed only for the
equidistant distributed da'ta, and this also represents a lmitation in its
application.

This paper points out the dﬂsadvantaves of such an approach, intro-
duces precise definition of the rate of oh'mge and proposes the imanner
in which this important economic inductor can be more acculately de-
termined.

" 2. THE RATE OF CHANGE

.. Let variable y depends on some dependent variable x as y = f(x)},
where f: D= R (D € R) is a derivable function on D.

DEFINITION 1. Relative ratio of change in the value of the depen-
dent variable y in an interval Ax

1 Ay

c=—o

y Ax

(1)

* This anticle ds based on some research work done in: the project »Mo-
del razvoja poljoprivrede i prehrambene dndustrije Slavonlje i Baranjex,
Ekonomski fakultet Osijek, Zavod za ekonomska istraZivanja, Osijek, 1981.
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will be called the rate of change of the dependent variable y in the
interval Ax, If ¢ > 0, or ¢ < 0 we speak about the rate of growth, or the
rate of decrease, respectively.’

REMARK 1. /n economic research the independent variable x often
represents time. If the interval Ax is a year, then ¢ = Ay/y is termed
the yearly rate of change of the dependent variable y which is in most
cases expressed in percentages.

If in (1) it is allowed that A x— 0, then the following definition can
be introduced:

DEFINITION 2, Let D € R and f: D— R be a derivable function in
the point xee D. If f (x) # 0, then the munber

1
¢ =——"%"(x) . @
- f(xd)

will be called the rate of change of the function y = f (x) in the point x..

3. DETERMINATION OF THE RATE OF GROWTH OR THE RATE OF
: DECREASE

In economic research mapping f (according to this 'the dependent
varigble y depends on the independent variable x) is most often not
krown. This mapping can be determined by knowing the nature of the
dependent variable v, and on the basis of a certain number of data
(D, %, 7)), i=1,...,m whidh characterize the dependent variable y in
points xi -'p; are the positive mumbers tepresenting weights of data.
Generally, the function f has the form

x=>f(xa,...,a) n<m,

where a,,..., a. are parameters which can be determined e. g. by the

method of least squares (see [3], [4], [5D), i. e. by minimization of the
functional

Ffose @) = 5 pi U (5 an oo ) — 518 @)

If lthe fumotions @;— f (a.,..., a;...) are dinear for each j = I,...,n,then
there is a linear problem of least squares (see [2], [6]). Opposed to
this there is a nonlinear problem of the least squares (see [3], [4], [5].

The nonlinear least squares problem Is a special case of unconst-
rained minimization, which is generally solved using iterative methods
of the form

Akt = ax 4 M py, k=20,1,... . “)
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where pi s the direction vector from the p’oi-n't_ = (a,f”,.....,a,.‘*')’ ‘to
the point aw, and M ds the length of th.e step in th(? direction of the
the vector p.. At the same time the minimizing function (3) has a spe-
cial form. Its gradient can be wnitten in the form

grad F=J"P®,

where @ :R"-»R™ js a function with components o (a) = yi—T (xi; ),
J — Tacobian matrix of the function:

e a ‘I" a (pl b
da 3 (tu
Jm | enee e )
3 o g om

3 ar d an _

and P = diag (p1, ..., pn). Hessian of the functional F can b.e wzji"tten as

o e a e eeie

He=JTPJ + ):pkmka,

k=t

where HieL (R") are the matrices defined with

& O
(Hi)y = ———, k=1,...,m
dmoda

Most algbfithms for solving nonlinear least squares proble.ms use these
special forms of the gradient and the Hessian of the functional F.
© If in (4) vector p: has been chosen as the solution of equation. »

] TP Tip=—grad F:

then we get the wellknown Gauss®Newton method (see [3], [57), which
is used_for the requirements of this paper. Some other methods for
solving nonlinear least squares problems can be also scen in (3] and [5]..
" This ppaper shows how the average rate of change {growth 'or'decrea—
se) of the dependent variable y can be detenmined in a certain Hﬂltel_“/%_ﬂ
taking into account known values of the dependent variable y i this
interval and using the least squares method. )
Suppose that data (p,x, ), i=1,...,m are known, where X1 <
<1 <...< %m The function x— f (x) should be determined so that in
each point of the interval [x;, x»} there is the constant rate of change,
and at the same time the values of function f in points (x1, i=1, ..., m)
should be as close as possible to the values (y,i=1,..., m). Coefficients
k and [ of the associated linear trend y = kx 4-1 in the sense of the
least squares method (see [6]) can always be uniformly defined for the
glven data.
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DEFINITION 3. We will say that data (p, x4 y), i=1,...,m have
the property of the- preponderant decrease (growth) if the coefficient of
direction k of associaled linear trend is negative (positive).

For a more detailed explanation of this notion see [7].

In this work the following theorem is proved:

THEOREM 1. Let real numbers xi <X <...<Xm P, ...,Yn a5 well
as positive numbers p, ..., p- be given and let .

() y>0i=1...,m

(it) data (pi,xi,y), i =1,..., m have the property of preponderant
decrease.

In such case there are numbers b* >0 and c¢* <0 by which the
functional :

" F(bo) =‘>é}pu (b exp (cxi) — yi ' (5)

is minimized on the set A= {(b,c)e R* b > 0, c< 0}>.

By analogy, it could also be shown in the case when data have the
property of the preponderant growth. Namely, it can be shown that in

such a case there are numbers b* > (0 and c¢* > 0 which minimize the
functional (5).

THEOREM 2. Let (pyx,y), i=1,...,m be given data and x1 <...
oo <xme Function x—»f(x; b* c*) = b*.exp (c*, %), where (b* c*) is the
minima point of the functional (5) has a constant rate of growth in each
point xe R (if data have the properly of the preponderant growth), or
decrease (if data have the property of the preponderant decrease) which
equals to c*. At the samme time the sum of squared deviations (f (x:) — i)
related to weights p is the least..

Proof. Let it be asswmed that data (py, xi, yi), i =1,...,m have the
property of the preponderant deorease. The function with the property
of such rate of decrease which is constant and equal to ¢ in each point
xe R must satisfy the Definition 2, 1. e. .

1

y=¢ c<0. ' (6)
y

Solution of this differential equation is the function
fx; b, ¢) = b exp (cx). ()

For the given set of data (py, Xy, 31), i = 1,..., m which has the property
of preponderant decrease according to Theorem 1, there is always a
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pair of numbers (b% ¢*) (b* >0, ¢* < 0) by which the functional (5 is
mlmA similar approach can be used to show that in the caie cif p;ff;og
derant growth of data there is a'].wa'ys a..p?ir_ofdnumbers (b*, c.) ( 0,
c*> ) by which the functional (5) is minimized. R

Tl)le }I,Jroblem of the determination of parameters b‘and ¢ m:x:;;l
nential function x— b exp (cx) wsing the method o_f .leaft §quar§ o
be transformed in linear form so that mstea:d of minimization o
tional (5) it should be minimized as the functional

- g
D (b, c) =1 pi[Inb + cxo—lnyid’ (8)

sl

] i n such
which is well known in statistical literature (see, e. g. [8;1,d[5;]).alpxilt ]:m i
a case the required condition fs that the sum of s.quaue‘ -o% e
deviations of real values (y} from theoretical ones (f (x)) should

inimal. . red
® When x is time and if the rate of changes should be approximate

in the interval [0, T1, then instead of (7) the function (see [91)
: ) 9
Fltie)=71(0) (1 + ) &)

is used more often for the small values of ¢.Tf { =T and “isTng notation
yo = f (0) and yr =1 (1), then (9) becomes

T

e .
c= / —1 _ Y
Yo .

i i ra-
The first term in (10) can be qon‘sxdered as the geometric mean of
tios .

by b2 yr

Ye.. :')’1 Yr—t

. ata
It is obvious that using these formulas the influence of all Oti];]:l;n(ior'
except yr and yr is completely Jost and this always produce§ approac
rect value of rate of change ¢. In some cases the use of.thiz_orll) of
.can produce a completely wrong conclusion about the directl
tendency in the observed phenomenon.

4. COMPARISON OF METHODS FOR COMPUTING THE RATE
OF CHANGE

: IR At ‘which

The rate of change of some Obsehréd; economic henorénené);] ;;Eted
is manifested through data (ps, % yi), i=1, "“’Iln 5can - ?8)
using formuia (10) or by minimizing the functional:( ), or (8).
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A'l'oo often the rate of change is computed using the formula (10),
but at the same time shortages observed in application of this method

are not taken into the account. These shortages are expressed in the
following:

— the computed rate of change is a direct result of the first and
last daturmn, so .

— all 'other data, belween ‘the first and last one, have no influence
on the value of the rate of change.

If the rate of change is computed on the basis of minin¥izing the
functional (5), the precise rate of change is obtained in the observed
interval. The computational work is greatly simplified using linearization
of (8), which leads to the frequent applications of this method. On the
.other hand, reasons for such simplification in measuring the rate of
change are less justified especially if the importance of this economic
indicator is taken into account as well as the presence of the fast
development of methods for solving nonflinear least squares problems
and the rapid dispersion of using a computer in computational work.

According to Theorem 1 there are always optimal parameters b*
.and ¢* of the exponential function f(x) = b exp (cx) by which the func-
tional (5) is minimized. Therefore, if the minimum of the functional (8)

- A A
is achieved in the point (b, ¢), it holds

F (b* c*) < F (b, o). (11)

.

. A simple and frequently occunsing situation in which strict inegua-
ity exists in (11) will be shown in the following examiple,
EXAMPLE

Data (/,—T,fs), (1,0, f:)}, (I, T, {3} ave given, where positive numbers
do not construct a geometric series and f; # f.

Values of optimal parameters obtained by minimizing functional
(8) are

A —_—
b= v fifafs -
. L (12)
.1 f
c= In
2T fi

A A
We will show that the functional (5) in the point (b, ¢} does not
.achieve its minimuwm which according to Theorem [ means that

F(b-¢) S F (b*, c¥).
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The second component of the gradient qf the functional F can be seen
A A
in the point (b, ¢):
L 9F(be) A

A A A
A=—o =bT (—be":’ + fi 8"‘¢ + b —1s e’)
2 dc

which can be written in the form

A=bT (fo—f) (Vi fifs— Vi F) .
fitfs

The expression fs—7f is not cancelled because of the condition fi # f

and the expression V Fifsfa— Y fifs also does not chsapp.e'tlé‘,sségz(; “;i
assumed that numbers f, fs 5 do not construct a geom?t}i‘l Emdtio.nml
means that the point (b, ¢) is not a st?tiona‘ry’polnt of the B

(5), and neither can its minimum be achieved in it.

REMARK 2. This example shows that the rates of' cha}nge ;Cflglifﬁg
on the basis of the functionals (5) and (8) (in the. case 1\1\; len]f ; ot
equidistant distributed x-axis) are the same -only-if numbers. Jr 1
members of the geometric series. .

Tt is expected that this result can be generalized.

For example, if data are given as

(1, —I, 0.01), (1, 0,0.05); (1, 1, 0.9)
using the formula (10) we get s’ = 8.49.

Since

Ay=be (e—1)
holds for the ex:ponénﬁaﬂ. function (7) in the case when Ax =/, it_ can
be easily shown that according to Definition I the rate of change 1is .gi-
ven

s=e—1
Tixerefone, by minimizing the functional (8) value of the rate of change

§ = 8.488, but the real value of the rate of change computed on the ba-
sis of minimizing the functional (3) is 5 = 16.64.
5. CONCLUSION

In the case when formula (10) is used for c.omputing the rzllte ‘%ftCEI;ferg
ge of the dependent variable y, the intenpretation of the result obid
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should take into account all the limitations of this method. These li-
mitations arise from the fact that the exponential function is lincarized
using Taylor's formula and can therefore only be used in cases of a
distinct stable exponential growth of the dependent variable y. In esti-
mation of parameters b and ¢ in exponential function by minimizing
functional (8) there is supposed the existence of strict positiveness of
data. If data j: are close to 0, there is no reliability in the parameters
and the rate of growth estimated in this manner.

On the basis of 21l the results considered, it can be concluded that
the rate of change can be estimated with the greatest reliability using
the method of minimizing the functional (5), and this means that some
of the methods for solving nonlinear least squares probléms should be
.used.
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STOPA PROMIENE U EKONOMSKIM ISTRAZIVANJIMA
Rudolf SCITOVSKI i Slavica KOSANOVIC
Rezime

i : itegorije
U svrhu pradenja tendencije i inlenziteta neke z,kf)e};cémssti(c); ak{rf;sgta {1[
desto je nuino sa sigurno$éu poznavaii kretanje nj
pﬂdai] ovom &lanku uvodi se precizna (geﬁnicﬁ;’a stope rastt{llkttltwp:f(;l_
promatrane ekonomske pojave, te preilazet );gcm kako se egzakli
se procijeniti ovaj vafan ekonomski pokazatelj. ) .
Ze P'I\(I)ggne, i slujc”aju kada se za izracunavanje stope. p:{o:;;xz;;a;z;gi
varijable y koristi formula (10), tada se u ru_q:lerprelacz;t o e era.
tata treba voditi raduna o Svim ogranicenjima ovakvog 4()11 ! kf? .onenci-
nidenja nastaju iz Sinjenice da se prumjenom ove ;11‘atodee ” Z;e o8
jalna funkcija linearizira koristenjen Ta.ylon'we fmb”';lo, e sanonct
toga moze koristili sano u slucajevima z;faztto S!(tl 1 bt bgi A
jalnog rasta zavisne vm’ij.abl_e- ¥ U procjeni pammegz)marﬁposmvua o
nencijalnoj funkciji minimiziranjen funkcionala ( I;zo B ot
egzistencija stroge pozitivnosti pod:}laka. .:\de.dw;mz., a;L 0 S i nisu
blizu 0, tada paramelri i stopa promjens pt ocjenjeni.na.ovaj-
vjerodostojni. o i -
! Na osnovi svih razmatranih rezultata moZe se zqk‘lj_ucfiz ﬁgl ’izi;':(;
pa promjene procjenjena koriStenjem mfftOde )11.1111_):}11]111 m;ggzjenu ki
la (5) najvjerodostojnija, ali da takay pI'le-LL}') zah-t.l)exk a I:ii'ata
metoda riedavanja nelinearnih problema najmanjih kva .




